OCR Maths FP3

Mark Scheme Pack

2006-2014

1 Directions [1,1, -1] and [2, -3, 1] $\begin{aligned} & \theta=\cos ^{-1} \frac{\|[1,1,-1] \cdot[2,-3,1]\|}{\sqrt{3}} \sqrt{14} \\ & =\cos ^{-1} \frac{\|-2\|}{\sqrt{42}} \\ & =72.0^{\circ}, 72^{\circ} \text { or } 1.26 \mathrm{rad} \end{aligned}$	B1 M1 M1 A1 4 4	For identifying both directions (may be implied by working) For using scalar product of their direction vectors For completely correct process for their angle For correct answer
2 (i) Identities $b, 6$ Subgroups $\{b, d\},\{6,4\}$	$\begin{array}{\|rr} \text { B1 } & \text { B1 } \\ \text { B1 } & \text { B1 } \\ \hline & 4 \\ \hline \end{array}$	For correct identities For correct subgroups
(ii) $\{a, b, c, d\} \leftrightarrow\{2,6,8,4\}$ or $\{8,6,2,4\}$	B1 B1 B1 3	For $b \leftrightarrow 6, d \leftrightarrow 4$ For $a, c \leftrightarrow 2,8$ in either order SR If B0 B0 B0 then M1 A1 may be awarded for stating the orders of all elements in G and H
3 $\begin{aligned} & \text { (i) } 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} z}{\mathrm{~d} x} \\ & \Rightarrow \frac{\mathrm{~d} z}{\mathrm{~d} x}+2 x z=\mathrm{e}^{-x^{2}} \end{aligned}$ Integrating factor $\left(\mathrm{e}^{\int 2 x \mathrm{dx}}=\right) \mathrm{e}^{x^{2}}$ $\begin{aligned} & \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x}\left(z \mathrm{e}^{x^{2}}\right) \text { OR } \frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{3} \mathrm{e}^{x^{2}}\right)=1 \\ & \Rightarrow z \mathrm{e}^{x^{2}} \text { OR } y^{3} \mathrm{e}^{x^{2}}=x(+c) \\ & \Rightarrow y=(x+c)^{\frac{1}{3}} \mathrm{e}^{-\frac{1}{3} x^{2}} \end{aligned}$	M1 A1 B1 $\sqrt{ }$ M1 A1 A1 6	For differentiating substitution For resulting equation in z and x For correct IF f.t. for an equation in suitable form For using IF correctly For correct integration ($+c$ not required here) For correct answer AEF
(ii) As $x \rightarrow \infty, y \rightarrow 0$	$\begin{gathered} \hline \text { B1 } 1 \\ 7 \end{gathered}$	For correct statement
$\begin{aligned} & 4 \text { (i) } \cos \theta=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right), \\ & \quad \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \\ & \Rightarrow \cos ^{2} \theta \sin ^{4} \theta=\frac{1}{4}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{2} \frac{1}{16}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{4} \\ & =\frac{1}{4}\left(\mathrm{e}^{2 \mathrm{i} \theta}+2+\mathrm{e}^{-2 i \theta}\right) \cdot \frac{1}{16}\left(\mathrm{e}^{4 i \theta}-4 \mathrm{e}^{2 i \theta}+6-4 \mathrm{e}^{-2 i \theta}+\mathrm{e}^{-4 i \theta}\right) \\ & =\frac{1}{64}\left(\left(\mathrm{e}^{6 i \theta}+\mathrm{e}^{-6 i \theta}\right)-2\left(\mathrm{e}^{4 \mathrm{ii} \mathrm{\theta}}+\mathrm{e}^{-4 i \theta}\right)-\left(\mathrm{e}^{2 \mathrm{i} \theta}+\mathrm{e}^{-2 i \theta}\right)+4\right) \\ & =\frac{1}{32}(\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2) \quad \text { AG } \end{aligned}$	B1 M1 A1 A1 M1 A1 6	For either expression, seen or implied z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout For expanding terms For the 2 correct expansions SR Allow A1 A0 for $k\left(\mathrm{e}^{2 i \theta}+2+\mathrm{e}^{-2 i \theta}\right)\left(\mathrm{e}^{4 i \theta}-4 \mathrm{e}^{2 i \theta}+6-4 \mathrm{e}^{-2 i \theta}+\mathrm{e}^{-4 i \theta}\right), k \neq \frac{1}{64}$ For grouping terms and using multiple angles For answer obtained correctly

$\begin{aligned} & \text { (ii) } \int_{0}^{\frac{1}{3} \pi} \cos ^{2} \theta \sin ^{4} \theta \mathrm{~d} \theta= \\ & =\frac{1}{32}\left[\frac{1}{6} \sin 6 \theta-\frac{1}{2} \sin 4 \theta-\frac{1}{2} \sin 2 \theta+2 \theta\right]_{0}^{\frac{1}{3} \pi} \\ & =\frac{1}{32}\left[0+\frac{1}{4} \sqrt{3}-\frac{1}{4} \sqrt{3}+\frac{2}{3} \pi-0\right]=\frac{1}{48} \pi \end{aligned}$	M1 A1 A1 3 9	For integrating answer to (i) For all terms correct For correct answer
5 (i) EITHER $\begin{aligned} & z=\sqrt{8} \operatorname{cis}(2 k+1) \frac{\pi}{4}, k=0,1,2,3 \\ & \quad \text { OR } z=\sqrt{8} \mathrm{e}^{(2 k+1) \frac{\pi}{4} \mathrm{i}}, k=0,1,2,3 \end{aligned}$	B1 $\text { B1 } 2$	For correct modulus AEF For correct arguments AEF
(ii) $\begin{aligned} z= & 2 \sqrt{2}\left\{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathrm{i},-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathrm{i},-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \mathrm{i}, \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \mathrm{i}\right\} \\ z & =2+2 \mathrm{i},-2+2 \mathrm{i},-2-2 \mathrm{i}, 2-2 \mathrm{i} \end{aligned}$ $(z-\alpha),(z-\beta),(z-\gamma),(z-\delta)$	B1 B1 B1 $\mathrm{B} 1 \sqrt{ } 4$	For any of $\pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} \mathrm{i}$ For any one value of z correct For all values of z correct AEFcartesian (may be implied from symmetry or factors) f.t., where $\alpha, \beta, \gamma, \delta$ are answers above
$\text { (iii) } \begin{aligned} & \text { EITHER }(z-(2+2 \mathrm{i}))(z-(2-2 \mathrm{i})) \\ & \times(z-(-2+2 \mathrm{i}))(z-(-2-2 \mathrm{i})) \\ = & \left(z^{2}+4 z+8\right)\left(z^{2}-4 z+8\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For combining factors from (ii) in pairs Use of complex conjugate pairs For correct answer
$\begin{gathered} \text { OR } \quad z^{4}+64=\left(z^{2}+a z+b\right)\left(z^{2}+c z+d\right) \\ \Rightarrow a+c=0, b+a c+d=0, a d+b c=0, b d=64 \\ \text { Obtain }\left(z^{2}+4 z+8\right)\left(z^{2}-4 z+8\right) \end{gathered}$	M1 M1 A1 3 9	For equating coefficients For solving equations For correct answer
$\begin{aligned} 6 \text { (i) } & \mathbf{M B}=[2,1,-2], \text { OF }=[4,1,2] \\ & \mathbf{M B} \times \mathbf{O F} \\ = & {[4,-12,-2] \text { OR } k[2,-6,-1] } \end{aligned}$	B1 M1 A1 3	For either vector correct (allow multiples) For finding vector product of their MB and OF For correct vector
(ii) EITHER Find vector product of any two of $\pm[2,-1,2], \pm[0,0,2]$, $\pm[2,-1,0]$ and any two of $\pm[4,0,2], \pm[4,-1,0], \pm[0,1,2]$ Obtain $k[1,2,0]$ Obtain $k[1,4,-2]$ $x+2 y=2 \text { and } x+4 y-2 z=0$	M1 A1 A1 M1 A1	For finding two relevant vector products For correct LHS of plane $C M G$ For correct LHS of plane $O E G$ For substituting a point into each equation For both equations correct AEF
OR Use $a x+b y+c z=d$ with coordinates of C, M, G OR O, E, G substituted Obtain $a: b: c=1: 2: 0$ for $C M G$ Obtain $a: b: c=1: 4:-2$ for $O E G$ $x+2 y=2 \text { and } x+4 y-2 z=0$	M1 A1 A1 M1 A1 5	For use of cartesian equation of plane For correct ratio For correct ratio For substituting a point into each equation For both equations correct AEF

(iii) EITHER Put x, y OR $z=t$ in planes $O R$ evaluate $k[1,2,0] \times k[1,4,-2]$ Obtain $\mathbf{r}=\mathbf{a}+t \mathbf{b}$ where $\begin{aligned} & \mathbf{a}=[0,1,2],[2,0,1] \text { OR }[4,-1,0] \\ & \mathbf{b}=k[-2,1,1] \end{aligned}$	M1 A1 A1 3 11	For solving plane equations in terms of a parameter $O R$ for finding vector product of normals to planes from (ii) Obtain a correct point AEF Obtain correct direction AEF
$\begin{aligned} 7 \text { (i) } & \left(x^{-1} a x\right)^{m}=\left(x^{-1} a x\right)\left(x^{-1} a x\right) \ldots\left(x^{-1} a x\right) \\ & =x^{-1} a a \ldots a x, \text { associativity, } x x^{-1}=e \\ & =x^{-1} a^{m} x=x^{-1} e x \text { when } m=n, \\ \text { not } m & <n \\ & =x^{-1} x \\ & =e \Rightarrow \text { order } n \end{aligned}$	M1 A1 A1 B1 A1 A1 6	For considering powers of $x^{-1} a x$ For using associativity and inverse properties For using order of a correctly For using property of identity For correct conclusion
$\begin{aligned} & \text { (ii) EITHER }\left(x^{-1} a x\right) z=e \\ & \quad \Rightarrow a x z=x e=x \Rightarrow x z=a^{-1} x \\ & \Rightarrow z=x^{-1} a^{-1} x \end{aligned}$	M1 A1 A1	For attempt to solve for z AEF For using pre- or post multiplication For correct answer
OR Use $(p q)^{-1}=q^{-1} p^{-1}$ $O R(p q r)^{-1}=r^{-1} q^{-1} p^{-1}$ State $\left(x^{-1}\right)^{-1}=x$ Obtain $x^{-1} a^{-1} x$	M1 A1 A1 3	For applying inverse of a product of elements For stating this property For correct answer with no incorrect working SR correct answer with no working scores B1 only
$\text { (iii) } \begin{aligned} a x=x a & \Rightarrow x=a^{-1} x a \\ \Rightarrow x a^{-1} & =a^{-1} x \end{aligned}$	M1 A1 2 11	Start from commutative property for $a x$ Obtain commutative property for $a^{-1} x$
8 (i) $m^{2}+2 k m+4=0$ $\Rightarrow m=-k \pm \sqrt{k^{2}-4}$ (a) $x=\mathrm{e}^{-k t}\left(A \mathrm{e}^{\sqrt{k^{2}-4} t}+B \mathrm{e}^{-\sqrt{k^{2}-4} t}\right)$	M1 A1 2 M1 A1 2	For stating and attempting to solve auxiliary eqn For correct solutions, at any stage AEF For using $\mathrm{e}^{\mathrm{f}(t)}$ with distinct real roots of aux eqn For correct answer AEF
$\begin{aligned} & \text { (b) } x=\mathrm{e}^{-k t}\left(A \mathrm{e}^{\mathrm{i} \sqrt{4-k^{2}} t}+B \mathrm{e}^{-\mathrm{i} \sqrt{4-k^{2}} t}\right) \\ & x=\mathrm{e}^{-k t}\left(A^{\prime} \cos \sqrt{4-k^{2}} t+B^{\prime} \sin \sqrt{4-k^{2}} t\right) \\ & \text { OR } x=\mathrm{e}^{-k t}\left(C^{\prime} \frac{\cos }{\sin }\left(\sqrt{4-k^{2}} t+\alpha\right)\right) \end{aligned}$	M1 A1 2	For using $\mathrm{e}^{\mathrm{f}(t)}$ with complex roots of aux eqn This form may not be seen explicitly but if stated as final answer earns M1 A0 For correct answer
(c) $x=\mathrm{e}^{-2 t}\left(A^{\prime \prime}+B^{\prime \prime} t\right)$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For using $\mathrm{e}^{\mathrm{f}(t)}$ with equal roots of aux eqn For correct answer. Allow k for 2

$\begin{aligned} & \text { (ii)(a) } x=B^{\prime} \mathrm{e}^{-t} \sin \sqrt{3} t \\ & \quad \dot{x}=B^{\prime} \mathrm{e}^{-t}(\sqrt{3} \cos \sqrt{3} t-\sin \sqrt{3} t) \\ & t=0, \dot{x}=6 \Rightarrow B^{\prime}=2 \sqrt{3}, x=2 \sqrt{3} \mathrm{e}^{-t} \sin \sqrt{3} t \end{aligned}$	B1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ A1 4	For using $t=0, x=0$ correctly. f.t. from (b) For differentiating x For correct expression. f.t. from their x For correct solution AEF SR $\sqrt{ }$ and AEF OK for $x=C^{\prime} \mathrm{e}^{-t} \cos \left(\sqrt{3} t+\frac{1}{2} \pi\right)$
(b) $x \rightarrow 0$ $\mathrm{e}^{-t} \rightarrow 0$ and $\sin ()$ is bounded		For correct statement For both statements

$1 \text { (a) } \begin{aligned} \text { Identity } & =1+0 \mathrm{i} \\ \text { Inverse } & =\frac{1}{1+2 \mathrm{i}} \\ & =\frac{1}{1+2 \mathrm{i}} \times \frac{1-2 \mathrm{i}}{1-2 \mathrm{i}}=\frac{1}{5}-\frac{2}{5} \mathrm{i} \end{aligned}$	B1 B1 B1 3	For correct identity. Allow 1 For $\frac{1}{1+2 \mathrm{i}}$ seen or implied For correct inverse AEFcartesian
$\text { (b) } \begin{aligned} \text { Identity } & =\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right) \\ \text { Inverse } & =\left(\begin{array}{cc} -3 & 0 \\ 0 & 0 \end{array}\right) \end{aligned}$	B1 B1 2 5	For correct identity For correct inverse
$\begin{aligned} & 2 \text { (a) }\left(z_{1} z_{2}=\right) 6 \mathrm{e}^{\frac{5}{12} \pi \mathrm{i}} \\ & \quad\left(\frac{z_{1}}{z_{2}}=\frac{2}{3} \mathrm{e}^{-\frac{1}{12} \pi \mathrm{i}}=\right) \frac{2}{3} \mathrm{e}^{\frac{23}{2} \pi \mathrm{i}} \end{aligned}$	B1 B1 M1 A1 4	For modulus $=6$ For argument $=\frac{5}{12} \pi$ For subtracting arguments For correct answer
$\text { (b) } \begin{aligned} & \left(w^{-5}=\right) 2^{-5} \operatorname{cis}\left(-\frac{5}{8} \pi\right) \\ = & \frac{1}{32}\left(\cos \frac{11}{8} \pi+i \sin \frac{11}{8} \pi\right) \end{aligned}$	M1 A1 A1 3 7	For use of de Moivre For $-\frac{5}{8} \pi$ seen or implied For correct answer (allow 2^{-5} and cis $\frac{11}{8} \pi$)

4 Integrating factor $\mathrm{e}^{\int-\frac{x^{2}}{1+x^{3}} \mathrm{~d} x}$ $\begin{aligned} & =\mathrm{e}^{-\frac{1}{3} \ln \left(1+x^{3}\right)}=\left(1+x^{3}\right)^{-\frac{1}{3}} \\ \Rightarrow & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y\left(1+x^{3}\right)^{-\frac{1}{3}}\right)=\frac{x^{2}}{\left(1+x^{3}\right)^{\frac{1}{3}}} \\ \Rightarrow & y\left(1+x^{3}\right)^{-\frac{1}{3}}=\frac{1}{2}\left(1+x^{3}\right)^{\frac{2}{3}}(+c) \\ \Rightarrow & 1=\frac{1}{2}+c \Rightarrow c=\frac{1}{2} \\ \Rightarrow & y=\frac{1}{2}\left(1+x^{3}\right)+\frac{1}{2}\left(1+x^{3}\right)^{\frac{1}{3}} \end{aligned}$	A1 M1 M1 A1 M1 A1 $\sqrt{ }$ A1 8	For correct process for finding integrating factor For correct IF, simplified (here or later) For multiplying through by their IF For integrating RHS to obtain $A\left(1+x^{3}\right)^{k} O R \ln A\left(1+x^{3}\right)^{k}$ For correct integration (+c not required here) For substituting $(0,1)$ into $G S$ (including +c) For correct c. f.t. from their GS For correct solution. AEF in form $y=\mathrm{f}(x)$
5 (i) EITHER $\mathbf{a}=[2,3,5], \mathbf{b}= \pm[2,2,0]$ $\mathbf{n}=\mathbf{a} \times \mathbf{b}= \pm k[-10,10,-2]$ Use $(2,1,5) O R(0,-1,5)$ $\Rightarrow 5 x-5 y+z=10$ OR $\mathbf{a}=[2,3,5], \quad \mathbf{b}= \pm[2,2,0]$ e.g. $\mathbf{r}=[2,1,5]+\lambda[2,2,0]+\mu[2,3,5]$ $[x, y, z]=[2+2 \lambda+2 \mu, 1+2 \lambda+3 \mu, 5+5 \mu]$ $\Rightarrow 5 x-5 y+z=10$	B1 M1 A1 $\sqrt{ }$ M1 A1 B1 M1 A1 $\sqrt{ }$ M1 A1 5	For stating 2 vectors in the plane For finding perpendicular to plane For correct \mathbf{n}. f.t. from incorrect \mathbf{b} For substituting a point into equation $a x+b y+c z=d$ where $[a, b, c]=$ their \mathbf{n} For correct cartesian equation AEF For stating 2 vectors in the plane For stating parametric equation of plane For writing 3 equations in x, y, z f.t. from incorrect b For eliminating λ and μ For correct cartesian equation AEF
(ii) $[2 t, 3 t-4,5 t-9]$	B1 1	For stating a point A on l_{1} with parameter t AEF
$\begin{aligned} & \text { (iii) } \pm[2 t+5,3 t-7,5 t-13] \\ & \pm[2 t+5,3 t-7,5 t-13] \cdot[2,3,5]=0 \\ & \Rightarrow t=2 \\ & \frac{x+5}{9}=\frac{y-3}{-1}=\frac{z-4}{-3} \text { OR } \\ & \frac{x-4}{9}=\frac{y-2}{-1}=\frac{z-1}{-3} \end{aligned}$	M1 M1 A1 A1 4	For finding direction of l_{2} from A and (5,3, 4) For using scalar product for perpendicularity with any vector involving t For correct value of t For a correct equation AEFcartesian SR For $2 p+3 q+5 r=0$ and no further progress award B1

$6 \text { (i) }\left(m^{2}+4=0 \Rightarrow\right) m= \pm 2 \mathrm{i} .$	B1 B1 B1 M1 A1 $B 1 \sqrt{ } 6$	For correct solutions of auxiliary equation (may be implied by correct CF) For correct CF (AEtrig but not $A \mathrm{e}^{2 \mathrm{i} x}+B \mathrm{e}^{-2 \mathrm{i} x}$ only) State a trial PI with at least $p \sin x$ For substituting PI into DE For correct p and q (which may be implied) For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
$\begin{aligned} & \text { (ii) }(0,0) \Rightarrow A=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 B \cos 2 x+\frac{1}{3} \cos x \Rightarrow \frac{4}{3}=2 B+\frac{1}{3} \\ & A=0, B=\frac{1}{2} \\ & \Rightarrow y=\frac{1}{2} \sin 2 x+\frac{1}{3} \sin x \end{aligned}$	B1 V M1 A1 A1 4 10	For correct equation in A and/or B f.t. from their GS For differentiating their GS and substituting values for x and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ For correct A and B Allow $A=-\frac{1}{4} \mathrm{i}, B=\frac{1}{4} \mathrm{i}$ from CF $A \mathrm{e}^{2 \mathrm{i} x}+B \mathrm{e}^{-2 \mathrm{i} x}$ For stating correct solution CAO
	M1 M1 A1 A1 4	For using de Moivre, showing at least 3 terms For recognising GP For correct GP sum For obtaining correct expression AG
$\text { (ii) } \begin{aligned} C+\mathrm{i} S & =\frac{2 \mathrm{i} \sin 3 \theta}{2 \mathrm{i} \sin \frac{1}{2} \theta} \cdot \mathrm{e}^{\frac{5}{2} \theta} \\ \mathrm{Re} \Rightarrow C & =\sin 3 \theta \cos \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta \\ \mathrm{Im} \Rightarrow S & =\sin 3 \theta \sin \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta \end{aligned}$	M1 A1 A1 B1 4	For expressing numerator and denominator in terms of sines For $k \sin 3 \theta$ and $k \sin \frac{1}{2} \theta$ For correct expression AG For correct expression
(iii) $\begin{aligned} & C=S \Rightarrow \sin 3 \theta=0, \tan \frac{5}{2} \theta=1 \\ & \theta=\frac{1}{3} \pi, \frac{2}{3} \pi \\ & \theta=\frac{1}{10} \pi, \frac{1}{2} \pi, \frac{9}{10} \pi \end{aligned}$	M1 A1 A2 4 12	For either equation deduced AEF Ignore values outside $0<\theta<\pi$ For both values correct and no extras For all values correct and no extras. Allow A1 for any 1 value $O R$ all correct with extras

8 (i) $r^{4} \cdot a \neq a \cdot r^{4}$	B1 1	For stating the non-commutative product in the given table, or justifying another correct one
(ii) Possible subgroups order 2, 5	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	For either order stated For both orders stated, and no more (Ignore 1)
(iii) (a) $\{e, a\}$ (b) $\left\{e, r, r^{2}, r^{3}, r^{4}\right\}$	$\begin{array}{ll} \mathrm{B} 1 \\ \mathrm{~B} 1 & 2 \end{array}$	For correct subgroup For correct subgroup
$\begin{aligned} & \text { (iv) order of } r^{3}=5 \\ & (a r)^{2}=a r \cdot a r=r^{4} a \cdot a r=e \\ & \Rightarrow \text { order of } a r=2 \\ & \left(a r^{2}\right)^{2}=a r^{2} a r \cdot r=a r^{2} r^{4} a \cdot r=a r a \cdot r=e \\ & \Rightarrow \text { order of } a r^{2}=2 \end{aligned}$	B1 M1 A1 A1 4	For correct order For attempt to find $(a r)^{m}=e O R$ $\left(a r^{2}\right)^{m}=e$ For correct order For correct order
(v)	B1 B1 B1 B1 B1 5 14	If the border elements $a r a r^{2} a r^{3} a r^{4}$ are not written, it will be assumed that the products arise from that order For all 16 elements of the form e or r^{m} For all 4 elements in leading diagonal $=e$ For no repeated elements in any completed row or column For any two rows or columns correct For all elements correct

1 (i) Attempt to show no closure $3 \times 3=1,5 \times 5=1$ OR $7 \times 7=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For showing operation table or otherwise For a convincing reason
$O R$ Attempt to show no identity Show $a \times e=a$ has no solution	M1 A1 2	For attempt to find identity $O R$ for showing operation table For showing identity is not 3 , not 5 , and not 7 by reference to operation table or otherwise
(ii) $(a=) 1$	B1 1	For value of a stated
(iii) EITHER: $\left\{e, r, r^{2}, r^{3}\right\}$ is cyclic, (ii) group is not cyclic	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*	For a pair of correct statements
Not isomorphic	$\begin{gathered} \begin{array}{l} \text { B1 } \\ \text { (dep*) } \\ 2 \end{array} \\ 5 \end{gathered}$	For correct conclusion
2 EITHER: [3, 1, -2] $\times[1,5,4]$ $\Rightarrow \mathbf{b}=k[1,-1,1]$ e.g. put x OR y OR $z=0$ and solve 2 equations in 2 unknowns Obtain [0, 2, -1] $\operatorname{OR}[2,0,1] \operatorname{OR}[1,1,0]$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For attempt to find vector product of both normals For correct vector identified with \mathbf{b} For giving a value to one variable For solving the equations in the other variables For a correct vector identified with a
OR: Solve $3 x+y-2 z=4, x+5 y+4 z=6$ e.g. $y+z=1$ OR $x-z=1$ OR $x+y=2$ Put x OR y OR $z=t$ $[x, y, z]=[t, 2-t,-1+t]$ OR $[2-t, t, 1-t]$ OR $[1+t, 1-t, t]$ Obtain [0, 2, -1] $\operatorname{OR}[2,0,1] \operatorname{OR}[1,1,0]$ Obtain $k[1,-1,1]$	M1 M1 M1 A1 A1 5 5	For eliminating one variable between 2 equations For solving in terms of a parameter For obtaining a parametric solution for x, y, z For a correct vector identified with a For correct vector identified with \mathbf{b}
3 $\begin{aligned} & z=\frac{6 \pm \sqrt{36-144}}{2} \\ & z=3 \pm 3 \sqrt{3} \mathrm{i} \\ & \text { Obtain }(r=) 6 \\ & \text { Obtain }(\theta=) \frac{1}{3} \pi \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using quadratic equation formula or completing the square For obtaining cartesian values AEF For correct modulus For correct argument
(ii) EITHER: 6^{-3} OR $\frac{1}{216}$ seen $\begin{aligned} & Z^{-3}=6^{-3}(\cos (-\pi) \pm \mathrm{i} \sin (-\pi)) \\ & \text { Obtain }-\frac{1}{216} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	f.t. from their r^{-3} For using de Moivre with $n= \pm 3$ For correct value
$\begin{aligned} & O R: z^{3}=6 z^{2}-36 z=6(6 z-36)-36 z \\ & 216 \text { seen } \\ & \text { Obtain }-\frac{1}{216} \end{aligned}$	M1 B1 A1 3 7	For using equation to find z^{3} Ignore any remaining z terms For correct value

$4 \text { (i) } \begin{aligned} & (y=x z \Rightarrow) \frac{\mathrm{d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} z}{\mathrm{~d} x}+z \\ & \\ & x \frac{\mathrm{~d} z}{\mathrm{~d} x}+z=\frac{x^{2}\left(1-z^{2}\right)}{x^{2} z}=\frac{1}{z}-z \\ & x \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{1}{z}-2 z=\frac{1-2 z^{2}}{z} \end{aligned}$	B1 M1 A1 3	For a correct statement For substituting into differential equation and attempting to simplify to a variables separable form For correct equation AG
$\text { (ii) } \begin{gathered} \int \frac{z}{1-2 z^{2}} \mathrm{~d} z=\int \frac{1}{x} \mathrm{~d} x \Rightarrow-\frac{1}{4} \ln \left(1-2 z^{2}\right)=\ln c x \\ 1-2 z^{2}=(c x)^{-4} \\ \frac{x^{2}-2 y^{2}}{x^{2}}=\frac{c^{-4}}{x^{4}} \\ x^{2}\left(x^{2}-2 y^{2}\right)=k \end{gathered}$	M1 M1* A1 A1 $\sqrt{ }$ M1 (dep*) A1 6	For separating variables and writing integrals For integrating both sides to ln forms For correct result (c not required here) For exponentiating their In equation including a constant (this may follow the next M1) For substituting $z=\frac{y}{x}$ For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
$\begin{aligned} & 5 \text { (i) (a) } e, p, p^{2} \\ & \text { (b) } e, q, q^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	For correct elements For correct elements SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
$\begin{aligned} & \text { (ii) } p^{3}=q^{3}=e \Rightarrow(p q)^{3}=p^{3} q^{3}=e \\ & \Rightarrow \text { order } 3 \\ & \left(p q^{2}\right)^{3}=p^{3} q^{6}=p^{3}\left(q^{3}\right)^{2}=e \Rightarrow \text { order } 3 \end{aligned}$	M1 A1 A1 3	For finding $(p q)^{3}$ or $\left(p q^{2}\right)^{3}$ For correct order For correct order SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv) $e, p q, p^{2} q^{2}$ OR e, $p q,(p q)^{2}$ $e, p q^{2}, p^{2} q \text { OR } e, p q^{2},\left(p q^{2}\right)^{2}$ $\text { OR } e, p^{2} q,\left(p^{2} q\right)^{2}$	B1 B1 B1 B1 4 10	For stating e and either $p q$ or $p^{2} q^{2}$ For all 3 elements and no more For stating e and either $p q^{2}$ or $p^{2} q$ For all 3 elements and no more

6 (i) (CF $m=-3 \Rightarrow) A \mathrm{e}^{-3 x}$	B1 1	For correct CF
(ii) $(y=) p x+q$	B1	For stating linear form for PI (may be implied)
$\Rightarrow p+3(p x+q)=2 x+1$	M1	For substituting PI into DE (needs y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$)
$\Rightarrow p=\frac{2}{3}, \quad q=\frac{1}{9}$	A1 A1	For correct values
\Rightarrow GS $\quad y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1V	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $\mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right)=(2 x+1) \mathrm{e}^{3 x}$		For stating integrating factor
$\Rightarrow y \mathrm{e}^{3 x}=\frac{1}{3} \mathrm{e}^{3 x}(2 x+1)-\int \frac{2}{3} \mathrm{e}^{3 x} \mathrm{~d} x$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y \mathrm{e}^{3 x}=\frac{2}{3} x \mathrm{e}^{3 x}+\frac{1}{3} \mathrm{e}^{3 x}-\frac{2}{9} \mathrm{e}^{3 x}+A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
\Rightarrow GS $y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 $\sqrt{ } 5$	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 A \mathrm{e}^{-3 x}+\frac{2}{3}$		For differentiating their GS
$\Rightarrow-3 A+\frac{2}{3}=0$	M1	For putting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$
$y=\frac{2}{9} \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1	For correct solution
$O R \frac{\mathrm{~d} y}{\mathrm{~d} x}=0, x=0 \Rightarrow 3 y=1$		For using original DE with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $x=0$ to find y
$\Rightarrow \frac{1}{3}=A+\frac{1}{9}$	M1	For using their GS with y and $x=0$ to find A
$y=\frac{2}{9} e^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 3	For correct solution
(iv) $y=\frac{2}{3} x+\frac{1}{9}$	$\begin{gathered} \mathrm{B} 1 \sqrt{ } 1 \\ \mathbf{1 0} \\ \hline \end{gathered}$	For correct function. f.t. from linear part of (iii)

7 (i) EITHER: (AG is $\mathbf{r}=)[6,4,8]+t k[1,0,1]$ or $[3,4,5]+t k[1,0,1]$ Normal to $B C D$ is $\mathbf{n}=k[1,1,-3]$ Equation of $B C D$ is $\mathbf{r} .[1,1,-3]=-6$ Intersect at $(6+t)+4+(-3)(8+t)=-6$ $t=-4(t=-1 \text { using }[3,4,5]) \Rightarrow \mathbf{O M}=[2,4,4]$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For a correct equation For finding vector product of any two of $\pm[1,-4,-1], \pm[2,1,1], \pm[1,5,2]$ For correct \mathbf{n} For correct equation (or in cartesian form) For substituting point on $A G$ into plane For correct position vector of M AG
$\begin{aligned} & \text { OR: } \begin{aligned} &(\mathbf{A G} \text { is } \mathbf{r}=)[6,4,8]+t k[1,0,1] \\ & \text { or }[3,4,5]+t k[1,0,1] \\ & \mathbf{r}=\mathbf{u}+\lambda \mathbf{v}+\mu \mathbf{w}, \text { where } \\ & \mathbf{u}=[2,1,3] \text { or }[1,5,4] \text { or }[3,6,5] \\ & \mathbf{v}, \mathbf{w}=\text { two of }[1,-4,-1],[1,5,2],[2,1,1] \\ &(x=) 6+t=2+\lambda+\mu \\ & \text { e.g. }(y=) 4=1-4 \lambda+5 \mu \\ &(z=) 8+t=3-\lambda+2 \mu \\ & t=-4 \text { or } \lambda=-\frac{1}{3}, \mu=\frac{1}{3} \\ & \Rightarrow \mathbf{O M}=[2,4,4] \end{aligned} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 6 \end{aligned}$	For a correct equation For a correct parametric equation of $B C D$ For forming 3 equations in t, λ, μ from line and plane, and attempting to solve them For correct value of t or λ, μ For correct position vector of M AG
(ii) $\left.\begin{array}{l} A, G, M \text { have } t=0,-3,-4 \quad \text { OR } \\ A G=3 \sqrt{2}, A M=4 \sqrt{2} \quad O R \\ \mathbf{A G}=[-3,0,-3], \mathbf{A M}=[-4,0,-4] \end{array}\right\} \Rightarrow A G: A M=3: 4$	B1 1	For correct ratio AEF
$\text { (iii) } \begin{aligned} \mathbf{O P} & =\mathbf{O C}+\frac{4}{3} \mathbf{C G} \\ & =\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	For using given ratio to find position vector of P For correct vector
(iv) EITHER: Normal to $A B D$ is $\mathbf{n}=k[19,3,-17]$ Equation of $A B D$ is $\mathbf{r} .[19,3,-17]=-10$ 19. $\frac{11}{3}+3 \cdot \frac{11}{3}-17 \cdot \frac{16}{3}=-10$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For finding vector product of any two of $\pm[4,3,5], \pm[1,5,2], \pm[3,-2,3]$ For correct \mathbf{n} For finding equation (or in cartesian form) For verifying that P satisfies equation
$O R$: Equation of $A B D$ is $\begin{aligned} & \mathbf{r}=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2] \text { (etc.) } \\ & {\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2]} \\ & \lambda=-\frac{2}{3}, \quad \mu=\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For finding equation in parametric form For substituting P and solving 2 equations for λ, μ For correct λ, μ For verifying 3rd equation is satisfied
$\begin{aligned} & O R: \quad \mathbf{A P}=\left[-\frac{7}{3},-\frac{1}{3},-\frac{8}{3}\right] \\ & \quad \mathbf{A B}=[-4,-3,-5], \mathbf{A D}=[-3,2,-3] \\ & \Rightarrow \mathbf{A B}+\mathbf{A D}=[-7,-1,-8] \\ & \Rightarrow \mathbf{A P}=\frac{1}{3}(\mathbf{A B}+\mathbf{A D}) \end{aligned}$	M1 A1 M1 A1 4 13	For finding 3 relevant vectors in plane $A B D P$ For correct AP or BP or DP For finding $\mathbf{A B}, \mathbf{A D}$ or $\mathbf{B A}, \mathbf{B D}$ or $\mathbf{D B}, \mathbf{D A}$ For verifying linear relationship

8 (i) $\cos 4 \theta+i \sin 4 \theta=$ $\begin{aligned} & c^{4}+4 \mathrm{i} c^{3} s-6 c^{2} s^{2}-4 \mathrm{i} c s^{3}+s^{4} \\ & \Rightarrow \sin 4 \theta=4 c^{3} s-4 c s^{3} \\ & \text { and } \cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4} \\ & \Rightarrow \tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} \end{aligned}$	M1 A1 M1 A1 4	For using de Moivre with $n=4$ For both expressions For expressing $\frac{\sin 4 \theta}{\cos 4 \theta}$ in terms of c and s For simplifying to correct expression
(ii) $\cot 4 \theta=\frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}$	B1 1	For inverting (i) and using $\cot \theta=\frac{1}{\tan \theta}$ or $\tan \theta=\frac{1}{\cot \theta}$. AG
(iii) $\cot 4 \theta=0$ Put $x=\cot ^{2} \theta$ $\theta=\frac{1}{8} \pi \Rightarrow x^{2}-6 x+1=0$ OR $\quad x^{2}-6 x+1=0 \Rightarrow \theta=\frac{1}{8} \pi$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } 3 \end{aligned}$	For putting $\cot 4 \theta=0$ (can be awarded in (iv) if not earned here) For putting $x=\cot ^{2} \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta=\frac{1}{8} \pi$ OR For deducing $\theta=\frac{1}{8} \pi$ from (ii) and quadratic
$\begin{aligned} & \text { (iv) } 4 \theta=\frac{3}{2} \pi O R \frac{1}{2}(2 n+1) \pi \\ & \text { 2nd root is } x=\cot ^{2}\left(\frac{3}{8} \pi\right) \\ & \Rightarrow \cot ^{2}\left(\frac{1}{8} \pi\right)+\cot ^{2}\left(\frac{3}{8} \pi\right)=6 \\ & \Rightarrow \operatorname{cosec}^{2}\left(\frac{1}{8} \pi\right)+\operatorname{cosec}^{2}\left(\frac{3}{8} \pi\right)=8 \end{aligned}$	$$	For attempting to find another value of θ For the other root of the quadratic For using sum of roots of quadratic For using $\cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta$ For correct value

1 (i) $z z^{*}=r \mathrm{e}^{\mathrm{i} \theta} \cdot r \mathrm{e}^{-\mathrm{i} \theta}=r^{2}=\|z\|^{2}$	B1	For verifying result AG
(ii) Circle Centre $0(+0 \mathrm{i}) O R(0,0) O R O$, radius 3	$$	For stating circle For stating correct centre and radius
2 EITHER: $(\mathbf{r}=)[3+t, 1+4 t,-2+2 t]$ $8(3+t)-7(1+4 t)+10(-2+2 t)=7$ $\Rightarrow(0 t)+(-3)=7 \Rightarrow$ contradiction l is parallel to Π, no intersection OR: $[1,4,2] .[8,-7,10]=0$ $\Rightarrow l$ is parallel to Π $(3,1,-2)$ into Π $\Rightarrow 24-7-20 \neq 7$ l is parallel to Π, no intersection	M1 M1 A1 A1 B1 5 M1 A1 M1 A1 B1	For parametric form of l seen or implied For substituting into plane equation For obtaining a contradiction For conclusion from correct working For finding scalar product of direction vectors For correct conclusion For substituting point into plane equation For obtaining a contradiction For conclusion from correct working
$O R$:Solve $\frac{x-3}{1}=\frac{y-1}{4}=\frac{z+2}{2}$ and $8 x-7 y+10 z=7$ eg $y-2 z=3,2 y-2=4 z+8$ eg $4 z+4=4 z+8$ l is parallel to Π, no intersection	M1 A1 M1 A1 B1	For eliminating one variable For eliminating another variable For obtaining a contradiction For conclusion from correct working
$\begin{aligned} & 3 \text { Aux. equation } m^{2}-6 m+8(=0) \\ & m=2,4 \\ & \text { CF }(y=) A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x} \\ & \text { PI }(y=) C \mathrm{e}^{3 x} \\ & 9 C-18 C+8 C=1 \Rightarrow C=-1 \\ & \text { GS } y=A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x}-\mathrm{e}^{3 x} \end{aligned}$	M1 A1 A1 $\sqrt{ }$ M1 A1 B1 $\sqrt{ } 6$	For auxiliary equation seen For correct roots For correct CF. f.t. from their m For stating and substituting PI of correct form For correct value of C For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI

$\begin{aligned} & \text { (i) } \begin{aligned} q(s t) & =q p=s \\ (q s) t & =t t \end{aligned}=s \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	For obtaining s For obtaining s
(ii) METHOD 1 Closed: see table Identity $=r$ Inverses: $p^{-1}=s, q^{-1}=t,\left(r^{-1}=r\right)$, $s^{-1}=p, t^{-1}=q$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	For stating closure with reason For stating identity r For checking for inverses For stating inverses $O R$ For giving sufficient explanation to justify each element has an inverse eg r occurs once in each row and/or column
METHOD 2 Identity $=r$ eg $p^{2}=t, p^{3}=q, p^{4}=s$ $\Rightarrow p^{5}=r$, so p is a generator	B1 M1 A1 A1	For stating identity r For attempting to establish a generator $\neq r$ For showing powers of $p(O R q, s$ or t) are different elements of the set For concluding $p^{5}\left(O R q^{5}, s^{5}\right.$ or $\left.t^{5}\right)=r$
(iii) $e, d, d^{2}, d^{3}, d^{4}$	B2 2 8	For stating all elements AEF eg $d^{-1}, d^{-2}, d d$

5 $\text { (i) } \begin{aligned} & (\cos 6 \theta=) \operatorname{Re}(c+\mathrm{i} s)^{6} \\ & (\cos 6 \theta=) c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6} \\ & (\cos 6 \theta=) \\ & c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3} \\ & (\cos 6 \theta=) 32 c^{6}-48 c^{4}+18 c^{2}-1 \end{aligned}$	M1 A1 M1 A1 4	For expanding (real part of) $(c+\mathrm{i} s)^{6}$ at least 4 terms and 1 evaluated binomial coefficient needed For correct expansion For using $s^{2}=1-c^{2}$ For correct result AG
$\text { (ii) } \begin{aligned} & 64 x^{6}-96 x^{4}+36 x^{2}-3=0 \Rightarrow \cos 6 \theta=\frac{1}{2} \\ & \Rightarrow(\theta=) \frac{1}{18} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi \text { etc. } \\ & \cos 6 \theta=\frac{1}{2} \text { has multiple roots } \\ & \text { largest } x \text { requires smallest } \theta \\ & \Rightarrow \text { largest positive root is } \cos \frac{1}{18} \pi \end{aligned}$	M1 A1 M1 A1 4	For obtaining a numerical value of $\cos 6 \theta$ For any correct solution of $\cos 6 \theta=\frac{1}{2}$ For stating or implying at least 2 values of θ For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root from a list of 3 positive roots $O R$ from general solution $O R$ from consideration of the cosine function

$6 \text { (i) } \begin{aligned} & \mathbf{n} \\ & =l_{1} \times l_{2} \\ & \mathbf{n} \\ & =[2,-1,1] \times[4,3,2] \\ & \mathbf{n} \\ & =k[-1,0,2] \\ & {[3,4,-1] \cdot k[-1,0,2]=-5 k } \\ & \mathbf{r} .[-1,0,2]=-5 \end{aligned}$	B1 M1* A1 M1 (*dep) A1 5	For stating or implying in (i) or (ii) that \mathbf{n} is perpendicular to l_{1} and l_{2} For finding vector product of direction vectors For correct vector (any k) For substituting a point of l_{1} into $\mathbf{r} . n$ For obtaining correct p. AEF in this form
$\begin{aligned} & \text { (ii) }[5,1,1] \cdot k[-1,0,2]=-3 k \\ & \text { r. }[-1,0,2]=-3 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } 2 \end{aligned}$	For using same \mathbf{n} and substituting a point of l_{2} For obtaining correct p. AEF in this form f.t. on incorrect \mathbf{n}
$\begin{aligned} & \text { (iii) } d=\frac{\|-5+3\|}{\sqrt{5}} \text { OR } d=\frac{\|[2,-3,2] \cdot[-1,0,2]\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(5,1,1) \text { to } \Pi_{1}=\frac{\|5(-1)+1(0)+1(2)+5\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(3,4,-1) \text { to } \Pi_{2}=\frac{\|3(-1)+4(0)-1(2)+3\|}{\sqrt{5}} \\ & \text { OR }[3-t, 4,-1+2 t] \cdot[-1,0,2]=-3 \Rightarrow t=\frac{2}{5} \\ & \text { OR }[5-t, 1,1+2 t] \cdot[-1,0,2]=-5 \Rightarrow t=-\frac{2}{5} \\ & \quad d=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}=0.894427 \ldots \end{aligned}$	M1 $\mathrm{A} 1 \sqrt{ } 2$	For using a distance formula from their equations Allow omission of \| $O R$ For finding intersection of \mathbf{n}_{1} and Π_{2} or \mathbf{n}_{2} and Π_{1} For correct distance AEF f.t. on incorrect \mathbf{n}
(iv) d is the shortest $O R$ perpendicular distance between l_{1} and l_{2}	B1 1 10	For correct statement
$7 \text { (i) } \begin{aligned} \left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) & \equiv z^{2}-(2) z \frac{\left(\mathrm{e}^{\mathrm{i} \phi}+\mathrm{e}^{-\mathrm{i} \phi}\right)}{(2)}+1 \\ & \equiv z^{2}-(2 \cos \phi) z+1 \end{aligned}$	B1 1	For correct justification AG
(ii) $z=\mathrm{e}^{\frac{2}{7} k \pi \mathrm{i}}$ for $k=0,1,2,3,4,5,6$ OR $0, \pm 1, \pm 2, \pm 3$	B1 B1 B1 B1 4	For general form $O R$ any one non-real root For other roots specified ($k=0$ may be seen in any form, eg $1, \mathrm{e}^{0}$, $\mathrm{e}^{2 \pi \mathrm{i}}$) For answers in form $\cos \theta+\mathrm{i} \sin \theta$ allow maximum B1 B0 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+{ }^{\text {ve }}$ real axis, and other points in correct quadrants
$\begin{aligned} & \text { (iii) }\left(z^{7}-1=\right)(z-1)\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \\ & =\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right) \times\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \times \\ & \quad \times(z-1) \\ & =\left(z^{2}-\left(2 \cos \frac{2}{7} \pi\right) z+1\right) \times \\ & \quad\left(z^{2}-\left(2 \cos \frac{4}{7} \pi\right) z+1\right) \times\left(z^{2}-\left(2 \cos \frac{6}{7} \pi\right) z+1\right) \times \\ & \times(z-1) \end{aligned}$	M1 M1 B1 A1 A1 5	For using linear factors from (ii), seen or implied For identifying at least one pair of complex conjugate factors For linear factor seen For any one quadratic factor seen For the other 2 quadratic factors and expression written as product of 4 factors

8 (i) Integrating factor $\mathrm{e}^{\int \tan x(\mathrm{~d} x)}$ $\begin{aligned} & =\mathrm{e}^{-\ln \cos x} \\ & =(\cos x)^{-1} \text { OR } \sec x \\ & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y(\cos x)^{-1}\right)=\cos ^{2} x \\ & y(\cos x)^{-1}=\int \frac{1}{2}(1+\cos 2 x)(\mathrm{d} x) \\ & y(\cos x)^{-1}=\frac{1}{2} x+\frac{1}{4} \sin 2 x(+c) \\ & y=\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x+c\right) \cos x \end{aligned}$	B1 M1 A1 B1 $\sqrt{ }$ M1 M1 A1 A1 8	For correct IF For integrating to \ln form For correct simplified IF AEF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$. their IF $)=\cos ^{3} x$. their IF For integrating LHS For attempting to use $\cos 2 x$ formula $O R$ parts for $\int \cos ^{2} x \mathrm{~d} x$ For correct integration both sides AEF For correct general solution AEF
$\text { (ii) } \begin{aligned} 2 & =\left(\frac{1}{2} \pi+c\right) \cdot-1 \Rightarrow c=-2-\frac{1}{2} \pi \\ y & =\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x-2-\frac{1}{2} \pi\right) \cos x \end{aligned}$	M1 A1 2 10	For substituting $(\pi, 2)$ into their GS and solve for c For correct solution AEF
9 $\begin{aligned} & \text { (i) } 3^{n} \times 3^{m}=3^{n+m}, n+m \in \mathrm{Z} \\ & \left(3^{p} \times 3^{q}\right) \times 3^{r}=\left(3^{p+q}\right) \times 3^{r}=3^{p+q+r} \\ & =3^{p} \times\left(3^{q+r}\right)=3^{p} \times\left(3^{q} \times 3^{r}\right) \Rightarrow \text { associativity } \end{aligned}$ Identity is 3^{0} Inverse is 3^{-n} $3^{n} \times 3^{m}=3^{n+m}=3^{m+n}=3^{m} \times 3^{n} \Rightarrow \text { commutativity }$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	For showing closure For considering 3 distinct elements, seen bracketed $2+1$ or $1+2$ For correct justification of associativity For stating identity. Allow 1 For stating inverse For showing commutativity
(ii) (a) $3^{2 n} \times 3^{2 m}=3^{2 n+2 m}\left(=3^{2(n+m)}\right)$ Identity, inverse OK	$\begin{aligned} & \text { B1* } \\ & \text { B1 } \\ & \begin{array}{l} \text { (*dep) } \\ 2 \end{array} \\ & \hline \end{aligned}$	For showing closure For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n}, $-n \notin$ subset	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For considering inverse For justification of not being a subgroup 3^{-n} must be seen here or in (i)
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A } \\ & \hline \end{aligned}$	For attempting to find a specific counter-example of closure For a correct counter-example and statement that it is not a subgroup For considering closure in general For explaining why $n^{2}+m^{2} \neq r^{2}$ in general and statement that it is not a subgroup

4727 Further Pure Mathematics 3

1 (a) (i) e.g. $a p \neq p a \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) e, a, b	B1 1	For correct elements
(b) c^{3} has order 2 c^{4} has order 3 c^{5} has order 6	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \quad 3 \\ \quad 6 \end{gathered}$	For correct order For correct order For correct order
2 $\begin{aligned} & m^{2}-8 m+16=0 \\ & \Rightarrow m=4 \\ & \Rightarrow \mathrm{CF}(y=)(A+B x) \mathrm{e}^{4 x} \end{aligned}$ For PI try $y=p x+q$ $\begin{aligned} & \Rightarrow-8 p+16(p x+q)=4 x \\ & \Rightarrow p=\frac{1}{4} \quad q=\frac{1}{8} \\ & \Rightarrow \text { GS } y=(A+B x) \mathrm{e}^{4 x}+\frac{1}{4} x+\frac{1}{8} \end{aligned}$	M1 A1 A1 $\sqrt{ }$ M1 A1 A1 B1 $\sqrt{ } 7$	For stating and attempting to solve auxiliary eqn For correct solution For CF of correct form. f.t. from m For using linear expression for PI For correct coefficients For GS $=\mathrm{CF}+\mathrm{PI}$. Requires $y=$. f.t. from CF and PI with 2 arbitrary constants in CF and none in PI
3 (i) line segment $O A$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	For stating line through O OR A For correct description AEF
$\text { (ii) } \begin{aligned} (\mathbf{r}-\mathbf{a}) & \times(\mathbf{r}-\mathbf{b})=\overrightarrow{A P} \times \overrightarrow{B P} \\ & =\|A P\|\|B P\| \sin \pi \cdot \hat{\mathbf{n}}=\mathbf{0} \end{aligned}$	B1 $\text { B1 } \quad 2$	For identifying $\mathbf{r}-\mathbf{a}$ with $\overrightarrow{A P}$ and $\mathbf{r}-\mathbf{b}$ with $\overrightarrow{B P}$ Allow direction errors For using \times of 2 parallel vectors $=\mathbf{0}$ $O R \sin \pi=0$ or $\sin 0=0$ in an appropriate vector expression
(iii) line through O parallel to $A B$	B1 B1 B1 3 7	For stating line For stating through O For stating correct direction SR For $\overrightarrow{A B}$ or $\overrightarrow{B A}$ allow B1 B0 B1
4 $\begin{aligned} & (C+\mathrm{i} S=) \quad \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x}(\cos 3 x+\mathrm{i} \sin 3 x)(\mathrm{d} x) \\ & \cos 3 x+\mathrm{i} \sin 3 x=\mathrm{e}^{3 \mathrm{i} x} \\ & \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{(2+3 \mathrm{i}) x}(\mathrm{~d} x)=\frac{1}{2+3 \mathrm{i}}\left[\mathrm{e}^{(2+3 \mathrm{i}) x}\right]_{0}^{\frac{1}{2} \pi} \\ & =\frac{2-3 \mathrm{i}}{4+9}\left(\mathrm{e}^{(2+3 \mathrm{i}) \frac{1}{2} \pi}-\mathrm{e}^{0}\right)=\frac{2-3 \mathrm{i}}{13}\left(-\mathrm{i}^{\pi}-1\right) \\ & =\left\{\frac{1}{13}\left(-2-3 \mathrm{e}^{\pi}+\mathrm{i}\left(3-2 \mathrm{e}^{\pi}\right)\right\}\right. \\ & C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right) \\ & S=\frac{1}{13}\left(3-2 \mathrm{e}^{\pi}\right) \end{aligned}$	B1 M1* A1 A1 M1 (dep*) M1 (dep*) A1 A1 8	For using de Moivre, seen or implied For writing as a single integral in exp form For correct integration (ignore limits) For substituting limits correctly (unsimplified) (may be earned at any stage) For multiplying by complex conjugate of $2+3 \mathrm{i}$ For equating real and/or imaginary parts For correct expression AG For correct expression

5	M1 A1 M1 A1 M1 A1 6	For correct process for finding integrating factor $O R$ for multiplying equation through by x For writing DE in this form (may be implied) For integration by parts the correct way round For 1st term correct For their 1st term and attempt at integration of $\cos _{\sin } k x$ For correct expression for y
$\begin{aligned} & \text { (ii) }\left(\frac{1}{4} \pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi}=\frac{1}{\pi}+\frac{4 c}{\pi} \Rightarrow c=\frac{1}{4} \\ & \Rightarrow y=-\frac{1}{2} \cos 2 x+\frac{1}{4 x} \sin 2 x+\frac{1}{4 x} \end{aligned}$	M1 A1 2	For substituting $\left(\frac{1}{4} \pi, \frac{2}{\pi}\right)$ in solution For correct solution. Requires $y=$.
(iii) $(y \approx)-\frac{1}{2} \cos 2 x$	$\begin{gathered} \mathrm{B} 1 \sqrt{ } 1 \\ \mathbf{9} \end{gathered}$	For correct function AEF f.t. from (ii)
6 (i) METHOD 1 State $B=(-1,-7,2)+t(1,2,-2)$ On plane $\Rightarrow(-1+t)+2(-7+2 t)-2(2-2 t)=-1$ $\begin{aligned} & \Rightarrow t=2 \Rightarrow B=(1,-3,-2) \\ & A B=\sqrt{2^{2}+4^{2}+4^{2}} \text { OR } 2 \sqrt{1^{2}+2^{2}+2^{2}}=6 \end{aligned}$	M1 M1 M1 A1 A1 5	Either coordinates or vectors may be used Methods 1 and 2 may be combined, for a maximum of 5 marks For using vector normal to plane For substituting parametric form into plane For solving a linear equation in t For correct coordinates For correct length of $A B$
METHOD 2 $\begin{aligned} & A B=\left\|\frac{-1-14-4+1}{\sqrt{1^{2}+2^{2}+2^{2}}}\right\|=6 \\ & O R A B=\mathbf{A C} \cdot \mathbf{A B}=\frac{[6,7,1] \cdot[1,2,-2]}{\sqrt{1^{2}+2^{2}+2^{2}}}=6 \\ & B=(-1,-7,2) \pm 6 \frac{(1,2,-2)}{\sqrt{1^{2}+2^{2}+2^{2}}} \\ & B=(-1,-7,2) \pm(2,4,-4) \\ & B=(1,-3,-2) \end{aligned}$	M1 A1 M1 B1 A1	For using a correct distance formula For correct length of $A B$ For using $B=A+$ length of $A B \times$ unit normal For checking whether + or - is needed (substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm[6,7,1], \pm[6,-3,0], \pm(0,10,1)$ Obtain $k[1,2,-20]$ $\begin{gathered} \theta=\cos ^{-1} \frac{\|[1,2,-2] \cdot[1,2,-20]\|}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{1^{2}+2^{2}+20^{2}}} \\ \theta=\cos ^{-1} \frac{45}{\sqrt{9} \sqrt{405}}=41.8^{\circ}\left(41.810 \ldots, .^{\circ}, 0.72972 \ldots\right) \end{gathered}$		For finding vector product of two relevant vectors For correct vector \mathbf{n} For using scalar product of two normal vectors For stating both moduli in denominator For correct scalar product. f.t. from \mathbf{n} For correct angle

7 (i) (a) $\sin \frac{6}{8} \pi=\frac{1}{\sqrt{2}}, \sin \frac{2}{8} \pi=\frac{1}{\sqrt{2}}$	B1 1	For verifying $\theta=\frac{1}{8} \pi$
(b) $\theta=\frac{3}{8} \pi$	M1 A1 2	For sketching $y=\sin 6 \theta$ and $y=\sin 2 \theta$ for 0 , θ, $\frac{1}{2} \pi$ $O R$ any other correct method for solving $\sin 6 \theta=\sin 2 \theta$ for $\theta \neq k \frac{\pi}{2}$ $O R$ appropriate use of symmetry $O R$ attempt to verify a reasonable guess for θ For correct θ
(ii) $\operatorname{Im}(c+\mathrm{i} s)^{6}=6 c^{5} s-20 c^{3} s^{3}+6 c s^{5}$ $\begin{gathered} \sin 6 \theta=\sin \theta\left(6 c^{5}-20 c^{3}\left(1-c^{2}\right)+6 c\left(1-c^{2}\right)^{2}\right) \\ \sin 6 \theta=\sin \theta\left(32 c^{5}-32 c^{3}+6 c\right) \\ \sin 6 \theta=2 \sin \theta \cos \theta\left(16 c^{4}-16 c^{2}+3\right) \\ \sin 6 \theta=\sin 2 \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right) \end{gathered}$	M1 A1 M1 A1 A1	For expanding $(c+\mathrm{i} s)^{6}$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms For using $s^{2}=1-c^{2}$ For any correct intermediate stage For obtaining this expression correctly AG
(iii) $16 c^{4}-16 c^{2}+3=1$ $\Rightarrow c^{2}=\frac{2 \pm \sqrt{2}}{4}$ $-\operatorname{sign}$ requires larger $\theta=\frac{3}{8} \pi$	M1 A1 A1 3 11	For stating this equation AEF For obtaining both values of c^{2} For stating and justifying $\theta=\frac{3}{8} \pi$ Calculator OK if figures seen

8 (i) Group A : $e=6$ Group B: $e=1$ Group C : $e=2^{0}$ OR 1 Group $D: \quad e=1$	\} B1	For any two correct identities For two other correct identities AEF for D, but not " $m=n$ "
(ii) OR orders of elements 1, 2, 4, 4 $O R$ cyclic group orders of elements 1, 2, 4, 4 $O R$ cyclic group $A \nRightarrow B$ $B \nRightarrow C$ $A \cong C$	B1* B1* B1 (dep*) B1 (dep*) B1 (dep*) 5	For showing group table $O R$ sufficient details of orders of elements $O R$ stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups A, B, C for another of groups A, B, C
(iii) $\frac{1+2 m}{1+2 n} \times \frac{1+2 p}{1+2 q}=\frac{1+2 m+2 p+4 m p}{1+2 n+2 q+4 n q}$ $=\frac{1+2(m+p+2 m p)}{1+2(n+q+2 n q)} \equiv \frac{1+2 r}{1+2 s}$	$\begin{aligned} & \text { M1* } \\ & \text { M1 } \\ & \text { (dep*) } \\ & \text { A1 } \\ & \text { A1 } 4 \end{aligned}$	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed SR $\frac{\text { odd }}{\text { odd }} \times \frac{\text { odd }}{\text { odd }}=\frac{\text { odd }}{\text { odd }}$ earns full credit SR If clearly attempting to prove commutativity, allow at most M1
(iv) Closure not satisfied Identity and inverse not satisfied	B1 B1 2 13	For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 OR B0 B1

4727 Further Pure Mathematics 3

\begin{tabular}{|c|c|c|c|}
\hline 1 (a)(i) \& e, r^{3}, r^{6}, r^{9} \& M1

A1 \& For stating e, r^{m} (any $m . .2$), and 2 other different elements in terms of e and r For all elements correct

\hline (ii) \& r generates G \& B1 1 \& | For this or any statement equivalent to: |
| :--- |
| all elements of G are included in a group with e and r $O R$ order of $r>$ order of all possible proper subgroups |

\hline \multirow[t]{2}{*}{(b)} \& \multirow[t]{2}{*}{$m, n, p, m n, n p, p m$} \& B1 \& For any 3 orders correct

\hline \& \& $$
\begin{gathered}
\text { B1 } \quad 2 \\
5
\end{gathered}
$$ \& For all 6 correct and no extras (Ignore 1 and mnp)

\hline \multirow[t]{5}{*}{2} \& METHOD 1 \& \&

\hline \& $$
\begin{aligned}
& {[1,3,2] \times[1,2,-1]} \\
& \mathbf{n}=k[-7,3,-1] \text { OR } 7 x-3 y+z=c(=17)
\end{aligned}
$$ \& M1

A1 \& For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation For correct vector OR LHS of equation

\hline \& \[
\theta=\sin ^{-1} \frac{|[1,4,-1] \cdot[-7,3,-1]|}{\sqrt{1^{2}+4^{2}+1^{2}} \sqrt{7^{2}+3^{2}+1^{2}}}

\] \& | M1 $\sqrt{ }$ |
| :--- |
| M1* |
| M1 | \& For using correct vectors for line and plane f.t. from normal For using scalar product of line and plane vectors For calculating both moduli in denominator

\hline \& \[
\theta=\sin ^{-1} \frac{6}{\sqrt{18} \sqrt{59}}=10.6^{\circ}

\] \& | A1 $\sqrt{ }$ |
| :--- |
| (*dep) | \& For scalar product. f.t. from their numerator

\hline \& (10.609... ${ }^{\circ}$, 0.18517...) \& \& For correct angle

\hline
\end{tabular}

METHOD 2

3 (i) $\frac{\mathrm{d} z}{\mathrm{~d} x}=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1 For differentiating substitution
(seen or implied)
$\frac{\mathrm{d} z}{\mathrm{~d} x}-1=\frac{z+3}{z-1} \Rightarrow \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{2 z+2}{z-1}=\frac{2(z+1)}{z-1}$
A1
For correct equation in z AEF
3 For correct simplification to AG
(ii) $\int \frac{z-1}{z+1} \mathrm{~d} z=2 \int \mathrm{~d} x$

$$
\begin{aligned}
& \Rightarrow \int 1-\frac{2}{z+1} \mathrm{~d} z \text { OR } \int 1-\frac{2}{u} \mathrm{~d} u=2 x(+c) \\
& \Rightarrow \\
& z-2 \ln (z+1) \text { OR } z+1-2 \ln (z+1) \\
& \Rightarrow-2 \ln (x+y+1)=x-y+c
\end{aligned}
$$

For $\int \frac{z-1}{z+1}(\mathrm{~d} z)$ and $\int(1)(\mathrm{d} x)$ seen or implied
For rearrangement of LHS into integrable form
OR substitution e.g. $u=z+1$ or $u=z-1$

A1 4 For correct general solution AEF

$$
\vec{z}-2 \ln (z+1) \text { OR } z+1-2 \ln (z+1) \quad \text { A1 } \quad \text { For correct integration of LHS as } \mathrm{f}(\mathrm{z})
$$

$$
\begin{aligned}
& 4 \text { (i) } \cos ^{5} \theta=\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)^{5} \\
& \cos ^{5} \theta=\frac{1}{32}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \\
& \text { B1 For } \cos \theta=\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2} \text { seen or implied } \\
& z \text { may be used for } \mathrm{e}^{\mathrm{i} \theta} \text { throughout } \\
& \text { For expanding }\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \text {. At least } 3 \text { terms and } \\
& 2 \text { binomial coefficients required } O R \text { reasonable attempt } \\
& \text { at expansion in stages } \\
& \cos ^{5} \theta=\frac{1}{32}\left(\mathrm{e}^{5 i \theta}+\mathrm{e}^{-5 \mathrm{i} \theta}+5\left(\mathrm{e}^{3 \mathrm{i} \theta}+\mathrm{e}^{-3 \mathrm{i} \theta}\right)+10\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)\right) \\
& \cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta) \\
& \text { M1 } \\
& \text { (ii) } \cos \theta=16 \cos ^{5} \theta \quad \text { B1 } \\
& \Rightarrow \cos \theta=0, \quad \cos \theta= \pm \frac{1}{2} \\
& \text { M1 For obtaining at least one of the values of } \cos \theta \text { from } \\
& \cos \theta=k \cos ^{5} \theta \text { OR from } 1=k \cos ^{4} \theta \\
& \Rightarrow \theta=\frac{1}{2} \pi, \frac{1}{3} \pi, \frac{2}{3} \pi \\
& \text { A1 A1 for any two correct values of } \theta \\
& \text { A1 } 4 \text { A1 for the 3rd value and no more in } 0 \text {, } \theta \text {, } \pi \\
& \text { Ignore values outside } 0 \text { „ } \theta \text { „ } \pi
\end{aligned}
$$

5 (i) METHOD 1
Lines meet where

$$
\begin{aligned}
& (x=) \quad k+2 \lambda=k+\mu \\
& (y=)-1-5 \lambda=-4-4 \mu \\
& (z=) \quad 1-3 \lambda=\quad-2 \mu \\
& \Rightarrow \quad \lambda=-1, \quad \mu=-2
\end{aligned}
$$

SR For finding λ OR μ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1

M1 For attempting to solve any 2 equations
A1 \quad For correct values of λ and μ
For attempting a check in 3rd equation
$O R$ verifying point of intersection is on both lines
A1 6 For correct point of intersection (allow vector)
For using parametric form to find where lines meet For at least 2 correct equations

METHOD 2

$d=\frac{|[0,3,1] \cdot[2,-5,-3] \times[1,-4,-2]|}{|\mathbf{b} \times \mathbf{c}|}$
For using a.b×c with appropriate vectors (division by $|\mathbf{b} \times \mathbf{c}|$ is not essential)
$d=c[0,3,1] .[-2,1,-3]=0$
B1 and showing $d=0$ correctly

Lines meet where

$(x=)(k+) 2 \lambda=(k+) \mu$	M1	For using parametric form to find where lines meet
$(y=)-1-5 \lambda=-4-4 \mu$	A1	For at least 2 correct equations
$(z=1-3 \lambda=-2 \mu$		
	M1	For attempting to solve any 2 equations
$\Rightarrow \lambda=-1, \quad \mu=-2$	A1	For correct value of λ OR μ
$\Rightarrow(k-2,4,4)$	A1	For correct point of intersection (allow vector)
METHOD 3		
e.g. $x-k=\frac{2(y+1)}{-5}=\frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
$\Rightarrow y=4$	A1	For correct value of x, y or z
$\frac{z-1}{-3}=\frac{y+1}{-5}$	M1	For solving for the third variable
$x=k-2$ OR $z=4$	A1	For correct values of 2 of x, y and z
$x-k=\frac{z}{-2}$ checks with $x=k-2, z=4$	B1	For attempting a check in 3rd equation
$\Rightarrow \quad(k-2,4,4)$	A1	For correct point of intersection (allow vector)

(ii) METHOD 1

$\mathbf{n}=[2,-5,-3] \times[1,-4,-2]$	M1		For finding vector product of 2 directions
$\mathbf{n}=c[-2,1,-3]$	A1		For correct normal
			SR Following Method 2 for (i),
			award M1 A1 $\sqrt{ }$ for \mathbf{n}, f.t. from their \mathbf{n}
$(1,-1,1)$ OR ($1,-4,0)$ OR ($-1,4,4$)	M1		For substituting a point in LHS
$\Rightarrow 2 x-y+3 z=6$	A1	4	For correct equation of plane AEF cartesian

METHOD 2

$\mathbf{r}=[1,-1,1]+\lambda[2,-5,-3]+\mu[1,-4,-2] \quad$ M1

$$
\begin{aligned}
& x=1+2 \lambda+\mu \\
& y=-1-5 \lambda-4 \mu \\
& z=1-3 \lambda-2 \mu \\
& \Rightarrow 2 x-y+3 z=6
\end{aligned}
$$

For using parametric form to find where lines meet
For at least 2 correct equations

For attempting to solve any 2 equations
For correct value of λ OR μ
For correct point of intersection (allow vector)
METHOD 3
e.g. $x-k=\frac{2(y+1)}{-5}=\frac{y+4}{-4}$

M1 For solving one pair of simultaneous equations
A1 For correct value of x, y or z
M1 For solving for the third variable
A1 For correct values of 2 of x, y and z
B1 For attempting a check in 3rd equation
A1 For correct point of intersection (allow vector)
$\mathbf{n}=[2,-5,-3] \times[1,-4,-2]$
For finding vector product of 2 directions
SR Following Method 2 for (i), award M1 A1 $\sqrt{ }$ for \mathbf{n}, f.t. from their \mathbf{n}
$(1,-1,1)$ OR $(1,-4,0)$ OR $(-1,4,4)$
A1
4 For correct equation of plane AEF cartesian

A1 For writing 3 linear equations

M1 \quad For eliminating λ and μ
A1 For correct equation of plane AEF cartesian

6 (i) When a, b have opposite signs, $a\|b\|= \pm a b, b\|a\|=\mp b a \Rightarrow a\|b\| \neq b\|a\|$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	For considering sign of $a\|b\| O R b\|a\|$ in general or in a specific case For showing that $a\|b\| \neq b\|a\|$ Note that $\|x\|=\sqrt{x^{2}}$ may be used
(ii) $(a \circ b) \circ c=(a\|b\|) \circ c=a\|b\|\|c\|$ OR $a\|b c\|$	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ(b \circ c)$
$a \circ(b \circ c)=a \circ(b\|c\|)=a\|b\| c\| \|=a\|b\|\|c\|$ OR $a\|b c\|$	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(iii)	B1*	For stating $e= \pm 1$ OR no identity
EITHER $a \circ e=a\|e\|=a \Rightarrow e= \pm 1$	M1	For attempting algebraic justification of +1 and -1 for e
$\begin{aligned} & \text { OR } e \circ a=e\|a\|=a \\ & \Rightarrow e=1 \text { for } a>0, e=-1 \text { for } a<0 \end{aligned}$	A1	For deducing no (unique) identity
Not a group	B1 (*dep) 4	For stating not a group
	10	

\begin{tabular}{|c|c|c|}
\hline 8 (i)
$$
\begin{aligned}
& m^{2}+1=0 \Rightarrow m= \pm \mathrm{i} \\
& \Rightarrow \text { C.F. } \\
& (y=) C \mathrm{e}^{\mathrm{i} x}+D \mathrm{e}^{-\mathrm{i} x}=A \cos x+B \sin x
\end{aligned}
$$ \& M1

A1 \& | For stating and attempting to solve correct auxiliary equation |
| :--- |
| For correct C.F. (must be in trig form) |
| SR If some or all of the working is omitted, award full credit for correct answer |

\hline (ii)(a) $y=p(\ln \sin x) \sin x+q x \cos x$ \& M1 \& For attempting to differentiate P.I. (product rule needed at least once)

\hline $$
\frac{\mathrm{d} y}{\mathrm{~d} x}=p \frac{\cos x}{\sin x} \sin x+p(\ln \sin x) \cos x+q \cos x-q x \sin x
$$ \& A1 \& For correct (unsimplified) result AEF

\hline $$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-p \sin x-p(\ln \sin x) \sin x & +\frac{p \cos ^{2} x}{\sin x} \\
& -2 q \sin x-q x \cos x
\end{aligned}
$$ \& A1 \& For correct (unsimplified) result AEF

\hline $$
-p \sin x+\frac{p \cos ^{2} x}{\sin x}-2 q \sin x \equiv \frac{1}{\sin x}
$$ \& M1 \& For substituting their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and y into D.E.

\hline \& M1 \& For using $\sin ^{2} x+\cos ^{2} x=1$

\hline $\Rightarrow p-2(p+q) \sin ^{2} x \equiv 1$ \& A1 6 \& For simplifying to AG (\equiv may be $=$)

\hline (b) \& M1 \& For attempting to find p and q by equating coefficients of constant and $\sin ^{2} x$ AND/OR giving value(s) to x (allow any value for x, including 0)

\hline $p=1, q=-1$ \& A1 2 \& For both values correct

\hline (iii) G.S.

\[
y=A \cos x+B \sin x+(\ln \sin x) \sin x-x \cos x

\] \& B1V \& | For correct G.S. |
| :--- |
| f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if p and q have not been found) |

\hline $\operatorname{cosec} x$ undefined at $x=0, \pi, 2 \pi$ \& M1 \& For considering domain of $\operatorname{cosec} x$ OR $\sin x \neq 0$

\hline OR $\sin x>0$ in $\ln \sin x$ \& \& $O R \ln \sin x$ term

\hline $\Rightarrow 0<x<\pi$ \& A1 3 \& | For stating correct range CAO |
| :--- |
| SR Award B1 for correct answer with justification omitted or incorrect |

\hline
\end{tabular}

4727 Further Pure Mathematics 3

1 (i) (a)	$(n=) 3$	B1 1	For correct n
(b)	$(n=) 6$	B1 1	For correct n
(c)	$(n=) 4$	B1 1	For correct n
(ii)	$(n=) 4,6$	B1	For either 4 or 6
		B1 2	For both 4 and 6 and no extras
			Ignore all $n \ldots 8$
			SR B0 B0 if more than 3 values given, even if they include 4 or 6
	5		
2 (i)	$\frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}} \times \frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}+\mathrm{i}}=\frac{1}{2}+\frac{1}{2} \mathrm{i} \sqrt{3}$	M1	For multiplying top and bottom by complex conjugate
	$O R \frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}}=\frac{2 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}}{2 \mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}}$		$O R$ for changing top and bottom to polar form
	$=(1) \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}$	A1	For ($r=$) 1 (may be implied)
		A1 3	For $(\theta=) \frac{1}{3} \pi$
			SR Award maximum A1 A0 if $\mathrm{e}^{\mathrm{i} \theta}$ form is not seen
(ii)	$\left(\mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right)^{6}=\mathrm{e}^{2 \pi \mathrm{i}}=1 \Rightarrow \quad(n=) 6$	M1	For use of $\mathrm{e}^{2 \pi \mathrm{i}}=1, \mathrm{e}^{\mathrm{i} \pi}=-1$, $\sin k \pi=0$ or $\cos k \pi= \pm 1$ (may be implied) For $(n=) 6$ SR For ($n=$) 3 only, award M1 A0
		5	
3 (i)	$\begin{aligned} \mathbf{n} & =[2,1,3] \times[3,1,5] \\ & =[2,-1,-1] \end{aligned}$	M1	For using direction vectors and attempt to find vector product For correct direction (allow multiples)
(ii)	$d=\frac{[5,2,1] \cdot[2,-1,-1]}{\sqrt{6}}$	B1	For $(\mathbf{A B}=)[5,2,1]$ or any vector joining lines For attempt at evaluating AB.n For $\|\mathbf{n}\|$ in denominator
		M1	
		M1	
	$=\frac{7}{\sqrt{6}}=\frac{7}{6} \sqrt{6}=2.8577$	A1 4	For correct distance
		6	

$\left.4 \begin{array}{c}m^{2}+4 m+5(=0) \Rightarrow m=\frac{-4 \pm \sqrt{16-20}}{2} \\ =-2 \pm \mathrm{i} \\ \mathrm{CF}=\mathrm{e}^{-2 x}(C \cos x+D \sin x) \\ \mathrm{PI}=p \sin 2 x+q \cos 2 x \\ y^{\prime}=2 p \cos 2 x-2 q \sin 2 x \\ y^{\prime \prime}=-4 p \sin 2 x-4 q \cos 2 x \\ \cos 2 x(-4 q+8 p+5 q) \\ +\sin 2 x(-4 p-8 q+5 p)=65 \sin 2 x \\ 8 p+q=0 \\ p-8 q=65\end{array}\right\} \quad p=1, \quad q=-8 \quad \begin{aligned} & \mathrm{PI}=\sin 2 x-8 \cos 2 x \\ & \Rightarrow y= \\ & \mathrm{e}^{-2 x}(C \cos x+D \sin x)+\sin 2 x-8 \cos 2 x\end{aligned}$

M1 For attempt to solve correct auxiliary equation
A1 For correct roots
A1 $\sqrt{ } \quad$ For correct CF (here or later). f.t. from m
AEtrig but not forms including $\mathrm{e}^{\mathrm{i} x}$
B1 For stating a trial PI of the correct form
M1 For differentiating PI twice and substituting into the DE

A1 For correct equation
M1 For equating coefficients of $\cos 2 x$ and $\sin 2 x$ and attempting to solve for p and/or q
A1 \quad For correct p and q
B1 $\sqrt{ }$ For using GS $=\mathrm{CF}+\mathrm{PI}$, with 2 arbitrary constants in CF and none in PI

9

5 (i) | $y=u-\frac{1}{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{1}{x^{2}}$ |
| :--- |
| $x^{3}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}+\frac{1}{x^{2}}\right)=x\left(u-\frac{1}{x}\right)+x+1$ |
| $\Rightarrow x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=u$ |

$\begin{array}{ll}\text { M1 } & \text { For differentiating substitution } \\ \text { A1 } & \text { For correct expression }\end{array}$
M1 For substituting y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ into DE
A1 4 For obtaining correct equation AG
(ii) METHOD 1

$$
\begin{aligned}
& \int \frac{1}{u} \mathrm{~d} u=\int \frac{1}{x^{2}} \mathrm{~d} x \Rightarrow \ln k u=-\frac{1}{x} \\
& k u=\mathrm{e}^{-1 / x} \Rightarrow k\left(y+\frac{1}{x}\right)=\mathrm{e}^{-1 / x} \\
& \Rightarrow y=A \mathrm{e}^{-1 / x}-\frac{1}{x}
\end{aligned}
$$

M1 For separating variables and attempt at integration
A1 For correct integration (k not required here)
M1 For any 2 of $\quad k$ seen,
M1 For all 3 of $\quad \begin{aligned} & \text { exponentiating, } \\ & \text { substituting for } u\end{aligned}$
A1 5 For correct solution AEF in form $y=\mathrm{f}(x)$
METHOD 2
$\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{1}{x^{2}} u=0 \Rightarrow$ I.F. $\mathrm{e}^{\int-1 / x^{2} \mathrm{~d} x}=\mathrm{e}^{1 / x} \quad$ M1 \quad For attempt to find I.F.
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d} x}\left(u \mathrm{e}^{1 / x}\right)=0$
A1 For correct result
$u \mathrm{e}^{1 / x}=k \Rightarrow y+\frac{1}{x}=k \mathrm{e}^{-1 / x} \quad$ M
From $u \times$ I.F. $\left.=, \begin{array}{l}\text { for } k \text { seen } \\ \text { for substituting for } u\end{array}\right\}$ in either order
$\Rightarrow y=k \mathrm{e}^{-1 / x}-\frac{1}{x}$
A1 For correct solution AEF in form $y=\mathrm{f}(x)$

(ii)
e.g. $2+1-5=-2 \notin \mathrm{R}^{+}$

M1 For attempting to disprove closure
A1 For stating closure is not necessarily satisfied ($0<x+y$, 5 required)
e.g. $2 \times 5-11=-1 \notin \mathrm{R}^{+}$
\Rightarrow no inverse
$\begin{array}{lll}\text { M1 } & & \text { For attempting to find an element with no inverse } \\ \text { A1 } & 4 & \text { For stating inverse is not necessarily satisfied }\end{array}$ ($x \ldots 10$ required)

13

8 (i) $\quad \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)$
$\sin ^{6} \theta=$
z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout
B1 For expression for $\sin \theta$ seen or implied
M1 For expanding $\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{6}$
At least 4 terms and 3 binomial coefficients required.
$-\frac{1}{64}\left(\mathrm{e}^{6 \mathrm{ii} \mathrm{\theta}}-6 \mathrm{e}^{4 i \theta}+15 \mathrm{e}^{2 \mathrm{i} \theta}-20+15 \mathrm{e}^{-2 i \theta}-6 \mathrm{e}^{-4 i \theta}+\mathrm{e}^{-6 \mathrm{ii} \mathrm{\theta}}\right)$ For correct expansion. Allow $\frac{ \pm(\mathrm{i})}{64}(\cdots \cdots$.
A1
$=-\frac{1}{64}(2 \cos 6 \theta-12 \cos 4 \theta+30 \cos 2 \theta-20) \quad$ M1 \quad For grouping terms and using multiple angles
$\sin ^{6} \theta=-\frac{1}{32}(\cos 6 \theta-6 \cos 4 \theta+15 \cos 2 \theta-10)$ A1 5 For answer obtained correctly AG
(ii) $\cos ^{6} \theta=O R \sin ^{6}\left(\frac{1}{2} \pi-\theta\right)=\quad$ M1 For substituting $\left(\frac{1}{2} \pi-\theta\right)$ for θ throughout $-\frac{1}{32}(\cos (3 \pi-6 \theta)-6 \cos (2 \pi-4 \theta)+15 \cos (\pi-2 \theta)-10)$

A1 For correct unsimplified expression
$\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)$ A1 3 For correct expression with $\cos n \theta$ terms AEF
(iii) $\int_{0}^{\frac{1}{4} \pi} \frac{1}{32}(-2 \cos 6 \theta-30 \cos 2 \theta) d \theta$
$=-\frac{1}{16}\left[\frac{1}{6} \sin 6 \theta+\frac{15}{2} \sin 2 \theta\right]_{0}^{\frac{1}{4} \pi}$
B1 $\sqrt{ }$ For correct integral. f.t. from $\sin ^{6} \theta-\cos ^{6} \theta$
M1 For integrating $\cos n \theta, \sin n \theta$ or $\mathrm{e}^{\mathrm{i} n \theta}$
A1 $\sqrt{ }$ For correct integration. f.t. from integrand
$=-\frac{11}{24} \quad$ A1 $4 \quad$ For correct answer WWW

4727 Further Pure Mathematics 3

6 (i) METHOD 1
\(\left.$$
\begin{array}{lll}\mathbf{n}_{1}=[1,1,0] \times[1,-5,-2] & \text { M1 } & \begin{array}{l}\text { For attempting to find vector product of the pair of } \\
\text { direction vectors }\end{array}
$$

\quad=[-2,2,-6]=k[1,-1,3] \& A1 \& For correct \mathbf{n}_{1}\end{array}\right]\)| Use $(2,2,1)$ |
| :--- |
| $\Rightarrow \mathbf{r} \cdot[-2,2,-6]=-6 \Rightarrow \mathbf{r} \cdot[1,-1,3]=3$ | A1 \quad A1 | For substituting a point into equation |
| :--- |
| For correct equation. aef in this form |

METHOD 2
$x=2+\lambda+\mu$
M1 For writing as 3 linear equations
$y=2+\lambda-5 \mu$
M1 \quad For attempting to eliminate λ and μ
$z=1 \quad-2 \mu$
A1 For correct cartesian equation
$\Rightarrow x-y+3 z=3$
A1 For correct equation. aef in this form
(ii) For $\mathbf{r}=\mathbf{a}+t \mathbf{b}$

METHOD 1
$\mathbf{b}=[1,-1,3] \times[7,17,-3] \quad$ M1 \quad For attempting to find $\mathbf{n}_{1} \times \mathbf{n}_{2}$

$$
=k[2,-1,-1]
$$

A1 $\sqrt{ } \quad$ For a correct vector. ft from \mathbf{n}_{1} in (i)
e.g. x, y or $z=0$ in $\left\{\begin{array}{c}x-y+3 z=3 \\ 7 x+17 y-3 z=21\end{array}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
Line is (e.g.) $\mathbf{r}=[1,1,1]+t[2,-1,-1]$
M1 For attempting to find a point on the line
A1 $\sqrt{ } \quad$ For a correct vector. ft from equation in (i)
SR a correct vector may be stated without working
A1 $\sqrt{ } 5$ For stating equation of line ft from \mathbf{a} and \mathbf{b} $\mathbf{S R}$ for $\mathbf{a}=[2,2,1]$ stated award M0

METHOD 2

Solve $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
In either order:
by eliminating one variable (e.g. z)
Use parameter for another variable (e.g. x) to find other variables in terms of t
(eg) $y=\frac{3}{2}-\frac{1}{2} t, z=\frac{3}{2}-\frac{1}{2} t$

Line is (eg) $\mathbf{r}=\left[0, \frac{3}{2}, \frac{3}{2}\right]+t[2,-1,-1]$
M1 For attempting to solve equations

M1 For attempting to find parametric solution
A1 $\sqrt{ } \quad$ For correct expression for one variable
A1 $\sqrt{ } \quad$ For correct expression for the other variable ft from equation in (i) for both

METHOD 3
eg x, y or $z=0$ in $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
eg $[3,0,0]-[1,1,1]$
$\mathbf{b}=k[2,-1,-1]$
Line is (eg) $\mathbf{r}=[1,1,1]+t[2,-1,-1]$

M1 For attempting to find a point on the line
A1 $\sqrt{ } \quad$ For a correct vector. ft from equation in (i)
SR a correct vector may be stated without working SR for $\mathbf{a}=[2,2,1]$ stated award M0
For finding another point on the line and using it with the one already found to find \mathbf{b}
A1 $\sqrt{ } \quad$ For a correct vector. ft from equation in (i)
$\mathrm{A} 1 \sqrt{ } \quad$ For stating equation of line. ft from \mathbf{a} and \mathbf{b}

$\begin{aligned} & 6 \text { (ii) } \\ & \text { contd } \end{aligned}$	METHOD 4		
	A point on Π_{1} is $\begin{aligned} & {[2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu]} \\ & \text { On } \Pi_{2} \Rightarrow \end{aligned}$	M1	For using parametric form for Π_{1} and substituting into Π_{2}
	$[2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu] .[7,17,-3]=21$	A1	For correct unsimplified equation
	$\Rightarrow \lambda-3 \mu=-1$	A1	For correct equation
	Line is (e.g.) $\mathbf{r}=[2,2,1]+(3 \mu-1)[1,1,0]+\mu[1,-5,-2]$	M1	For substituting into Π_{1} for λ or μ
	$\Rightarrow \mathbf{r}=[1,1,1]$ or $\left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right]+t[2,-1,-1]$	A1	For stating equation of line
9			
7 (i)	$\begin{aligned} & \cos 3 \theta+\mathrm{i} \sin 3 \theta=c^{3}+3 \mathrm{i} c^{2} s-3 c s^{2}-\mathrm{i} s^{3} \\ & \Rightarrow \cos 3 \theta=c^{3}-3 c s^{2} \text { and } \\ & \sin 3 \theta=3 c^{2} s-s^{3} \end{aligned}$	M1	For using de Moivre with $n=3$
		A1	For both expressions in this form (seen or implied) SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3 \theta=\frac{3 c^{2} s-s^{3}}{c^{3}-3 c s^{2}}$	M1	For expressing $\frac{\sin 3 \theta}{\cos 3 \theta}$ in terms of c and s
	$\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\frac{\tan \theta\left(3-\tan ^{2} \theta\right)}{1-3 \tan ^{2} \theta}$	A1 4	For simplifying to AG
(ii) (a)	$\theta=\frac{1}{12} \pi \Rightarrow \tan 3 \theta=1$		
	$\Rightarrow 1-3 t^{2}=t\left(3-t^{2}\right) \Rightarrow$	B1 1	For both stages correct AG
	$t^{3}-3 t^{2}-3 t+1=0$		
(b)	$(t+1)\left(t^{2}-4 t+1\right)=0$	M1	For attempt to factorise cubic For correct factors
		A1	
	$\Rightarrow(t=-1), t=2 \pm \sqrt{3}$	A1	For correct roots of quadratic
	- sign for smaller root \Rightarrow $\tan \frac{1}{12} \pi=2-\sqrt{3}$	A1 4	For choice of - sign and correct root AG
(iii)	$\mathrm{d} t=\left(1+t^{2}\right) \mathrm{d} \theta$	B1	For differentiation of substitution and use of $\sec ^{2} \theta=1+\tan ^{2} \theta$
	$\Rightarrow \int_{0}^{\frac{1}{12} \pi} \tan 3 \theta \mathrm{~d} \theta$	B1	For integral with correct θ limits seen
	$=\left[\frac{1}{3} \ln (\sec 3 \theta)\right]_{0}^{\frac{1}{12} \pi}=\frac{1}{3} \ln \left(\sec \frac{1}{4} \pi\right)$	M1	For integrating to $k \ln (\sec 3 \theta)$ OR $k \ln (\cos 3 \theta)$
	$=\frac{1}{3} \ln \sqrt{2}=\frac{1}{6} \ln 2$	M1	For substituting limits and $\sec \frac{1}{4} \pi=\sqrt{2}$ OR $\cos \frac{1}{4} \pi=\frac{1}{\sqrt{2}}$ seen
		A1 5	For correct answer aef
		14	

(iv) METHOD 1 M1 For attempting to find a non-commutative pair of
e.g. $\left.\begin{array}{l}a \cdot a p=a^{2} p=p^{3} \\ a p \cdot a=p\end{array}\right\} \Rightarrow$ not commutative
elements, at least one involving a
(may be embedded in a full or partial table)
M1 For simplifying elements both ways round
B1 For a correct pair of non-commutative elements
A1 4 For stating Q non-commutative, with a clear argument

METHOD 2

Assume commutativity, so (eg) $a p=p a$
(i) \Rightarrow
$p=a p \cdot a \Rightarrow p=p a \cdot a=p a^{2}=p p^{2}=p^{3}$
But p and p^{3} are distinct
$\Rightarrow Q$ is non-commutative

For setting up proof by contradiction

For using (i) and/or given properties
For obtaining and stating a contradiction
A1 For stating Q non-commutative, with a clear argument

METHOD 1

line segment between l_{1} and $l_{2}= \pm[4,-3,-9]$
$\mathbf{n}=[1,-1,2] \times[2,3,4]=(\pm)[-2,0,1]$
distance $=\frac{|[4,-3,-9] \cdot[-2,0,1]|}{\left(\sqrt{2^{2}+0^{2}+1^{2}}\right)}=\frac{17}{(\sqrt{5})}$
$\neq 0$, so skew
METHOD 2 lines would intersect where

$$
\left.\begin{array}{rl}
1+s & =-3+2 t \\
-2-s & =1+3 t \\
-4+2 s & =5+4 t
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
s-2 t
\end{array}=-4\right.
$$

\Rightarrow contradiction, so skew

B1 For correct vector
M1* For finding vector product of direction A1

M1 For using numerator of distance formula (*dep)
A1 5 For correct scalar product and correct conclusion

B1 For correct parametric form for either line
M1* For 3 equations using 2 different parameters
A1
M1 For attempting to solve
(*dep) to show (in)consistency
A1 For correct conclusion

2 (i) $(a+b \sqrt{5})(c+d \sqrt{5})$
M1 For using product of 2 distinct elements
$=a c+5 b d+(b c+a d) \sqrt{5} \in H$
A1 2 . For correct expression
(ii) $(e=) 1 O R 1+0 \sqrt{5}$

B1 1 For correct identity
(iii) EITHER $\frac{1}{a+b \sqrt{5}} \times \frac{a-b \sqrt{5}}{a-b \sqrt{5}}$

M1 For correct inverse as $(a+b \sqrt{5})^{-1}$
OR $(a+b \sqrt{5})(c+d \sqrt{5})=1 \Rightarrow\left\{\begin{aligned} a c+5 b d & =1 \\ b c+a d & =0\end{aligned}\right.$
inverse $=\frac{a}{a^{2}-5 b^{2}}-\frac{b}{a^{2}-5 b^{2}} \sqrt{5}$
(iv) 5 is prime $O R \sqrt{5} \notin \mathbb{Q}$

B1 $\mathbf{1}$ For a correct property (or equivalent)
6
3 Integrating factor $=\mathrm{e}^{\int 2 \mathrm{~d} x}=\mathrm{e}^{2 x}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left(y \mathrm{e}^{2 x}\right)=\mathrm{e}^{-x}$
$\Rightarrow y \mathrm{e}^{2 x}=-\mathrm{e}^{-x}(+c)$
$(0,1) \Rightarrow c=2$
$\Rightarrow y=-\mathrm{e}^{-3 x}+2 \mathrm{e}^{-2 x}$
B1 For correct IF
M1 For $\frac{\mathrm{d}}{\mathrm{d} x}$ (y.their IF $)=\mathrm{e}^{-3 x}$. their IF
A1 For correct integration both sides
M1 For substituting $(0,1)$ into their GS and solving for c
A1 $\sqrt{ } \quad$ For correct c f.t. from their GS
A1 6 For correct solution

6

4 (i) $\quad(z=) 2,-2,2 i,-2 i$

M1 For at least 2 roots of the form $k\{1, i\}$ AEF
A1 2 For correct values
(ii) $\frac{w}{1-w}=2,-2,2 \mathrm{i},-2 \mathrm{i}$
$w=\frac{z}{1+z}$
$w=\frac{2}{3}, 2$
$w=\frac{4}{5} \pm \frac{2}{5} \mathrm{i}$

M1 \quad For $\frac{w}{1-w}=$ any one solution from (i)
For attempting to solve for w, using any solution or in general
B1 For any one of the 4 solutions
A1 For both real solutions
A1 5 For both complex solutions
SR Allow B1 $\sqrt{ }$ and one A1 $\sqrt{ }$ from $k \neq 2$

7

5 (i) $\quad \mathbf{A B}=k\left[\frac{2}{3} \sqrt{3}, 0,-\frac{2}{3} \sqrt{6}\right]$,
B1 For any one edge vector of $\triangle A B C$
$\mathbf{B C}=k[-\sqrt{3}, 1,0], \quad \mathbf{C A}=k\left[\frac{1}{3} \sqrt{3},-1, \frac{2}{3} \sqrt{6}\right] \quad$ B1
M1 For attempting to find vector product of any two edges
$\mathbf{n}=k_{1}\left[\frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3}\right]=k_{2}\left[1, \sqrt{3}, \frac{1}{2} \sqrt{2}\right]$
substitute A, B or $C \Rightarrow x+\sqrt{3} y+\frac{1}{2} \sqrt{2} z=\frac{2}{3} \sqrt{3}$
M1 For substituting A, B or C into r.n
A1 5 For correct equation AG
SR For verification only allow M1, then
A1 for 2 points and A1 for the third point
(ii) Symmetry \quad B1* \quad For quoting symmetry or reflection in plane $O A B$ or $O x z$ or $y=0$

B1 For correct plane
(*dep)2 Allow "in y coordinates" or "in y axis" SR For symmetry implied by reference to opposite signs in y coordinates of C and D, award B1 only
(iii) $\quad \cos \theta=\frac{\left|\left[1, \sqrt{3}, \frac{1}{2} \sqrt{2}\right] \cdot\left[1,-\sqrt{3}, \frac{1}{2} \sqrt{2}\right]\right|}{\sqrt{1+3+\frac{1}{2}} \sqrt{1+3+\frac{1}{2}}}$

M1 For using scalar product of normal vectors
A1 For correct scalar product
$=\frac{\left|1-3+\frac{1}{2}\right|}{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$
M1 For product of both moduli in denominator
A1 4 For correct answer. Allow $-\frac{1}{3}$

6 (i) $\left(m^{2}+16=0 \Rightarrow\right) m= \pm 4 \mathrm{i}$
$\mathrm{CF}=A \cos 4 x+B \sin 4 x$
M1 $\begin{aligned} & \text { For attempt to solve correct auxiliary } \\ & \text { equation (may be implied by correct }\end{aligned}$
M1 $\begin{aligned} & \text { For attempt to solve correct auxiliary } \\ & \text { equation (may be implied by correct }\end{aligned}$
M1 $\begin{aligned} & \text { For attempt to solve correct auxiliary } \\ & \text { equation (may be implied by correct }\end{aligned}$ CF)
A1 2 For correct CF
(AEtrig but not $A \mathrm{e}^{4 \mathrm{i} x}+B \mathrm{e}^{-4 \mathrm{i} x}$ only)
M1 For differentiating PI twice, using product rule
A1 For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8 p \cos 4 x-16 p x \sin 4 x$
$\Rightarrow 8 p \cos 4 x=8 \cos 4 x$
$\Rightarrow p=1$
$\Rightarrow(y=) A \cos 4 x+B \sin 4 x+x \sin 4 x$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=p \sin 4 x+4 p x \cos 4 x$

A1 $\sqrt{ }$ For unsimplified $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. f.t. from $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1 For substituting into DE
A1 For correct p
$B 1 \sqrt{ } 6$

For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
(iii) $(0,2) \Rightarrow A=2$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 A \sin 4 x+4 B \cos 4 x+\sin 4 x+4 x \cos 4 x$
$x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow B=0$
$\Rightarrow y=2 \cos 4 x+x \sin 4 x$

B1 $\sqrt{ }$ For correct A. f.t. from their GS
M1 For differentiating their GS
M1 For substituting values for x and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find B
A1 4 For stating correct solution
CAO including $y=$

7 (i) $\cos 6 \theta=0 \Rightarrow 6 \theta=k \times \frac{1}{2} \pi$
$\Rightarrow \theta=\frac{1}{12} \pi\{1,3,5,7,9,11\}$

M1 For multiples of $\frac{1}{2} \pi$ seen or implied
A1 A1 for any 3 correct
A1 3 A1 for the rest, and no extras in $0<\theta<\pi$
(ii) METHOD 1
$\operatorname{Re}(c+\mathrm{i} s)^{6}=\cos 6 \theta=c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6}$
$\cos 6 \theta=c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3}$
$\Rightarrow \cos 6 \theta=32 c^{6}-48 c^{4}+18 c^{2}-1$
$\Rightarrow \cos 6 \theta=\left(2 c^{2}-1\right)\left(16 c^{4}-16 c^{2}+1\right)$

METHOD 2
$\operatorname{Re}(c+\mathrm{i} s)^{3}=\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$
$\Rightarrow \cos 6 \theta=\cos 2 \theta\left(\cos ^{2} 2 \theta-3 \sin ^{2} 2 \theta\right)$
$\Rightarrow \cos 6 \theta=\left(2 \cos ^{2} \theta-1\right)\left(4\left(2 \cos ^{2} \theta-1\right)^{2}-3\right)$
$\Rightarrow \cos 6 \theta=\left(2 c^{2}-1\right)\left(16 c^{4}-16 c^{2}+1\right)$
(iii) METHOD 1
$\cos 6 \theta=0$
$\Rightarrow 6$ roots of $\cos 6 \theta=0$ satisfy
$16 c^{4}-16 c^{2}+1=0$ and $2 c^{2}-1=0$
But $\theta=\frac{1}{4} \pi, \frac{3}{4} \pi$ satisfy $2 c^{2}-1=0$
EITHER Product of 4 roots $O R c= \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}$
$\Rightarrow \cos \frac{1}{12} \pi \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cos \frac{11}{12} \pi=\frac{1}{16}$

For expanding $(c+i s)^{6}$
M1 at least 4 terms and 2 binomial coefficients needed
A1 For 4 correct terms
M1 For using $s^{2}=1-c^{2}$

A1 For correct expression for $\cos 6 \theta$
A1 5 For correct result AG
(may be written down from correct $\cos 6 \theta$)

M1 For expanding $(c+\mathrm{i} s)^{3}$
at least 2 terms and 1 binomial coefficient needed
A1 For 2 correct terms
M1 For replacing θ by 2θ
A1 For correct expression in $\cos \theta$ (unsimplified)
A1 For correct result AG

M1 For putting $\cos 6 \theta=0$
A1 For association of roots with quartic and quadratic
B1 For correct association of roots with quadratic
M1 For using product of 4 roots OR for solving quartic
A1 5 For correct value (may follow A0 and B0)

METHOD 2
$\cos 6 \theta=0$
$\Rightarrow 6$ roots of $\cos 6 \theta=0$ satisfy
$32 c^{6}-48 c^{4}+18 c^{2}-1=0$
Product of 6 roots \Rightarrow
$\cos \frac{1}{12} \pi \cdot \frac{1}{\sqrt{2}} \cdot \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos \frac{11}{12} \pi=-\frac{1}{32}$
$\cos \frac{1}{12} \pi \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cos \frac{11}{12} \pi=\frac{1}{16}$

M1 For putting $\cos 6 \theta=0$
A1 For association of roots with sextic
M1 For using product of 6 roots
B1 For using $\cos \left\{\frac{3}{12} \pi, \frac{9}{12} \pi\right\}=\left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
A1 For correct value

8 (i)
$\mathrm{g}(x)=\frac{1}{2-2 \cdot \frac{1}{2-2 x}}=\frac{2-2 x}{2-4 x}=\frac{1-x}{1-2 x}$
M1 For use of $\mathrm{ff}(x)$
A1 For correct expression AG
$\operatorname{gg}(x)=\frac{1-\frac{1-x}{1-2 x}}{1-2 \cdot \frac{1-x}{1-2 x}}=\frac{-x}{-1}=x$
M1 For use of $\operatorname{gg}(x)$
A1 4 For correct expression AG
(ii) Order of $\mathrm{f}=4 \quad$ B1 For correct order
order of $\mathrm{g}=2$
B1. .2. For correct order
(iii) METHOD 1

$$
\begin{aligned}
& y=\frac{1}{2-2 x} \Rightarrow x=\frac{2 y-1}{2 y} \\
& \Rightarrow \mathrm{f}^{-1}(x)=\mathrm{h}(x)=\frac{2 x-1}{2 x} \text { OR } 1-\frac{1}{2 x}
\end{aligned}
$$

M1 For attempt to find inverse
A1 2 For correct expression
METHOD 2
$\mathrm{f}^{-1}=\mathrm{f}^{3}=\mathrm{fg}$ or gf
M1 For use of $\mathrm{fg}(x)$ or $\mathrm{gf}(x)$
$\mathrm{fg}(x)=\mathrm{h}(x)=\frac{1}{2-2\left(\frac{1-x}{1-2 x}\right)}=\frac{1-2 x}{-2 x}$
A1 For correct expression
(iv)

	e	f	g	h
e	e	f	g	h
f	f	g	h	e
g	g	h	e	f
h	h	e	f	g

M1 For correct row 1 and column 1
A1 For e, f, g, h in a latin square
A1 For correct diagonal e-g-e-g
A1 4 For correct table

2 (i) $a r=r^{5} a \Rightarrow r a r=r^{6} a$
$r^{6}=e \Rightarrow r a r=a$

M1 Pre-multiply $a r=r^{5} a$ by r
A1 2 Use $r^{6}=e$ and obtain answer AG
(ii) METHOD 1

For $n=1, r a r=a$ OR For $n=0, r^{0} a r^{0}=a$
B1 For stating true for $n=1 O R$ for $n=0$
Assume $r^{k} a r^{k}=a$
EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1}=r a r=a$
M1 \quad For attempt to prove true for $k+1$
OR $r^{k+1} a r^{k+1}=r . r^{k} a r^{k} . r=r a r=a$
OR $r^{k+1} a r^{k+1}=r^{k} \cdot$ rar. $r^{k}=r^{k} a r^{k}=a$
A1 For obtaining correct form
Hence true for all $n \in \mathbb{Z}^{+}$
A1 4 For statement of induction conclusion
METHOD 2
$r^{2} a r^{2}=r . r a r . r=r a r=a$, similarly for
M1 For attempt to prove for $n=2,3$
$r^{3} a r^{3}=a$
$r^{4} a r^{4}=r . r^{3} a r^{3} . r=r a r=a, \quad$ A1 \quad For proving true for $n=2,3,4,5$
similarly for $r^{5} a r^{5}=a$
$r^{6} a r^{6}=e a e=a$
B1 For showing true for $n=6$
For $n>6, r^{n}=r^{n \bmod 6}$, hence true for all $n \in \mathbb{Z}^{+}$
A1 For using $n \bmod 6$ and correct conclusion
METHOD 3
$r^{n} a r^{n}=r^{n-1} \cdot$ rar. r^{n-1}
M1 Starting from n, for attempt to prove true for $n-1$
OR $r^{n} a r^{n}=r^{n} \cdot r^{5} a . r^{n-1}=r^{n+5} a r^{n-1}$
$=r^{n-1} a r^{n-1}$
$=r^{n-2} a r^{n-2}=\ldots$
$=r a r=a$

METHOD 4

$a r=r^{5} a \Rightarrow a r^{2}=r^{5} a r=r^{10} a$ etc.
$\Rightarrow a r^{n}=r^{5 n} a$
$\Rightarrow r^{n} a r^{n}=r^{6 n} a$
$=e a=a$

M1 For attempt to derive $a r^{n}=r^{5 n} a$
A1 For correct equation
SR may be stated without proof
B1 For pre-multiplication by r^{n}
A1 For obtaining $a\left(r^{6}=e\right.$ may be implied)

3
(i) $\quad w^{2}=\cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi$
$w^{3}=\cos \frac{6}{5} \pi+i \sin \frac{6}{5} \pi$
$w^{*}=\cos \frac{2}{5} \pi-i \sin \frac{2}{5} \pi$
$=\cos \frac{8}{5} \pi+i \sin \frac{8}{5} \pi$

Allow cis $\frac{k}{5} \pi$ and $\mathrm{e}^{\frac{k}{5} \pi \mathrm{i}}$ throughout
B1 For correct value
B1 For correct value
B1 For w^{*} seen or implied
B1 4 For correct value
SR For exponential form with i missing, award B0 first time, allow others

B1* For $1+w$ in approximately correct position
B1 For $A B \approx B C \approx C D$
(*dep)
B1 For $B C, C D$ equally inclined to Im axis
(*dep)
B1 4 For E at the origin
Allow points joined by arcs, or not joined Labels not essential
(iii) $z^{5}-1=0$ OR $z^{5}+z^{4}+z^{3}+z^{2}+z=0$

B1 $\mathbf{1}$ For correct equation AEF (in any variable) Allow factorised forms using w, exp or trig

9

4 (i) $y=x z \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=z+x \frac{\mathrm{~d} z}{\mathrm{~d} x}$
$\Rightarrow x z+x^{2} \frac{\mathrm{~d} z}{\mathrm{~d} x}-x z=x \cos z \Rightarrow x \frac{\mathrm{~d} z}{\mathrm{~d} x}=\cos z$
$\Rightarrow \int \sec z \mathrm{~d} z=\int \frac{1}{x} \mathrm{~d} x$
$\Rightarrow \ln (\sec z+\tan z)=\ln k x$
$O R \ln \tan \left(\frac{1}{2} z+\frac{1}{4} \pi\right)=\ln k x$
$\Rightarrow \sec \left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)=k x$
OR $\tan \left(\frac{y}{2 x}+\frac{1}{4} \pi\right)=k x$
(ii) $\quad(4, \pi) \Rightarrow \sec \frac{1}{4} \pi+\tan \frac{1}{4} \pi=4 k$

$$
O R \tan \left(\frac{1}{8} \pi+\frac{1}{4} \pi\right)=4 k
$$

$\Rightarrow \sec \left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)=\frac{1}{4}(1+\sqrt{2}) x$
OR $\tan \left(\frac{y}{2 x}+\frac{1}{4} \pi\right)=\left(\frac{1}{4} \tan \frac{3}{8} \pi\right) x$ or $\frac{1}{4}(1+\sqrt{2}) x$

B1 For correct differentiation of substitution
M1 For substituting into DE
A1 For DE in variables separable form
For attempt at integration to \ln form on LHS

For correct integration (k not required here)

A1 6 For correct solution
AEF including RHS $=\mathrm{e}^{(\ln x)+c}$

M1 For substituting ($4, \pi$)
into their solution (with k)
A1 2 For correct solution AEF
Allow decimal equivalent $0.60355 x$
Allow $\mathrm{e}^{\ln x}$ for x

7 (i)
$(1,3,5)$ and $(5,2,5) \Rightarrow \pm[4,-1,0]$ in Π
$\mathbf{n}=[2,-2,3] \times[4,-1,0]=k[1,4,2]$
$\Rightarrow \mathbf{r} \cdot[1,4,2]=23$
(ii) METHOD 1

Perpendicular to Π through $(-7,-3,0)$ meets Π
where $(-7+k)+4(-3+4 k)+2(2 k)=23$
$\Rightarrow k=2 \Rightarrow d=2 \sqrt{1^{2}+4^{2}+2^{2}}=2 \sqrt{21} \approx 9.165$
METHOD 2
Π is $x+4 y+2 z=23$
$\Rightarrow d=\frac{|(-7)+4(-3)+2(0)-23|}{\sqrt{1^{2}+4^{2}+2^{2}}}=2 \sqrt{21} \approx 9.165$

METHOD 3

$\mathbf{m}=[1,3,5]-[-7,-3,0]=(\pm)[8,6,5] \quad$ M1 For finding a vector from l to Π
$O R=[5,2,5]-[-7,-3,0]=(\pm)[12,5,5]$
$\Rightarrow d=\frac{\mathbf{m} \cdot[1,4,2]}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{42}{\sqrt{21}}=2 \sqrt{21} \approx 9.165$

METHOD 4

$[-7,-3,0]+k[1,4,2]=[1,3,5]+s[2,-2,3]+t[4,-1,0]$ M1
$\left.\begin{array}{ll}k-2 s-4 t & =8 \\ 4 k+2 s+t & =6 \\ 2 k-3 s & =5\end{array}\right\} \Rightarrow k=2 \quad\left(s=-\frac{1}{3}, t=-\frac{4}{3}\right)$
$2 k-3 s=5$
$\Rightarrow d=2 \sqrt{1^{2}+4^{2}+2^{2}}=2 \sqrt{21} \approx 9.165$
METHOD 5
$d_{1}=\frac{23}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{23}{\sqrt{21}}$
$d_{2}=\frac{[-7,-3,0] \cdot[1,4,2]}{\sqrt{1^{2}+4^{2}+2^{2}}}=\frac{-19}{\sqrt{21}}$
$\Rightarrow d_{1}-d_{2}=d=\frac{23-(-19)}{\sqrt{21}}=2 \sqrt{21} \approx 9.165$
(iii) $(-7,-3,0)+k(1,4,2)$

Use $k=4$
$\mathbf{b}=[2,-2,3]$
$\mathbf{a}=[-3,13,8]$
$\mathbf{r}=[-3,13,8]+t[2,-2,3]$

M1 For attempt to use formula for perpendicular distance
M1 For substituting a point on l into plane equation
M1 For normalising the \mathbf{n} used in this part
A1 For correct distance AEF
M1 For finding a vector in Π
M1 For finding vector product of direction vectors of l and a line in Π
A1 For correct \mathbf{n}
A1 4 For correct equation. Allow multiples

M1 For using perpendicular from point on l to Π
Award mark for $k \mathbf{n}$ used
M1 For substituting parametric line coords into Π
M1 For normalising the \mathbf{n} used in this part
A1 4 For correct distance AEF

M1 For finding $\mathbf{m . n}$
M1 For normalising the \mathbf{n} used in this part
A1 For correct distance AEF
As Method 1 , using parametric form of Π
For using perpendicular from point on l to Π
Award mark for $k \mathbf{n}$ used
M1 For setting up and solving 3 equations

M1 For normalising the \mathbf{n} used in this part
A1 For correct distance AEF

M1 For attempt to find distance from O to Π $O R$ from O to parallel plane containing l

M1 For normalising the \mathbf{n} used in this part

M1 For finding $d_{1}-d_{2}$
A1 For correct distance AEF
M1 State or imply coordinates of a point on the
M1 State or imply $2 \times$ distance from (ii)
Allow $k= \pm 4 O R \pm 4 \sqrt{21}$ f.t. from (ii)
B1 For stating correct direction
A1 4 For correct point seen in equation $\mathbf{r}=\mathbf{a}+t \mathbf{b}$ AEF in this form

8 (i)	$\{A, D\} O R\{A, E\} O R\{A, F\}$	B1 1	For stating any one subgroup
(ii)	A is the identity 5 is not a factor of 6 $O R$ elements can be only of order $1,2,3,6$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	For identifying A as the identity For reference to factors of 6
(iii)	$B E=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=D, \quad E B=\left(\begin{array}{cc} 0 & \omega \\ \omega^{2} & 0 \end{array}\right)=F$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For finding $B E$ and $E B$ AND using $\omega^{3}=1$ For correct $B E$ (D or matrix) For correct $E B$ (F or matrix)
	$\begin{aligned} & D \text { or }\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \text { F or }\left(\begin{array}{cc} 0 & \omega \\ \omega^{2} & 0 \end{array}\right) \in M \\ & \Rightarrow \text { closure property satisfied } \end{aligned}$	A1 4	For justifying closure
	$B^{-1}=\frac{1}{1}\left(\begin{array}{cc} \omega^{2} & 0 \\ 0 & \omega \end{array}\right)=C$	M1 A1	For correct method of finding either inverse For correct $B^{-1}=C \quad$ Allow $\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega\end{array}\right)$
	$E^{-1}=\frac{1}{-1}\left(\begin{array}{cc}0 & -\omega^{2} \\ -\omega & 0\end{array}\right)=E$	A1 3	For correct $E^{-1}=E \quad$ Allow $\left(\begin{array}{cc}0 & \omega^{2} \\ \omega & 0\end{array}\right)$
(v)	METHOD 1		
	M is not commutative e.g. from $B E \neq E B$ in part (iii)	B1	For justification of M being not commutative
	N is commutative (as \times mod 9 is commutative)	B1	For statement that N is commutative
	$\Rightarrow M$ and N not isomorphic	B1\# 3	For correct conclusion
	METHOD 2 Elements of M have orders $1,3,3,2,2,2$	B1*	For all orders of one group correct
	Elements of N have orders 1, 6, 3, 2, 3, 6	B1 (*dep)	For sufficient orders of the other group correct
	Different orders $O R$ self-inverse elements $\Rightarrow M$ and N not isomorphic	B1\#	For correct conclusion SR Award up to B1 B1 B1 if the selfinverse elements are sufficiently well identified for the groups to be nonisomorphic
	METHOD 3 M has no generator since there is no element of order 6	B1	For all orders of M shown correctly
	N has 2 OR 5 as a generator	B1	For stating that N has generator 2 OR 5
	$\Rightarrow M$ and N not isomorphic	B1\#	For correct conclusion
	METHOD 4		
	M A B C D E F A B C D E F		
	$B \begin{array}{lllllll} & B & C & A & F & D & E\end{array}$		
	$C \quad C$ C C A B E F	B1*	For stating correctly all 6 squared elements
	$D \quad D \quad D \quad E \quad F \begin{array}{lllll}\text { D }\end{array}$		of one group
	$E \quad E \quad E \quad F \cdot D$		
	$F \left\lvert\, \begin{array}{lllllll} & F & D & E & B & C & A\end{array}\right.$		
	N 1 2 4 8 7 5 1		
	1 1 2 4 8 7 5		
	2 2 4 8 7 5 1		
	$4 l_{4}^{4} 808$	$\begin{aligned} & \text { B1 } \\ & \text { (*dep) } \end{aligned}$	For stating correctly sufficient squared elements of the other group
	7 7 5 1 2 4 8		
	5 5 1 2 4 8 7		
	$\Rightarrow M$ and N not isomorphic	B1\#	For correct conclusion
			\# In all Methods, the last B1 is dependent on at least one preceding B1

1 (i) Integrating factor. $\mathrm{e}^{\int x \mathrm{~d} x}=\mathrm{e}^{\frac{1}{2} x^{2}}$ $\begin{aligned} & \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{\frac{1}{2} x^{2}}\right)=x \mathrm{e}^{x^{2}} \\ & \Rightarrow y \mathrm{e}^{\frac{1}{2} x^{2}}=\frac{1}{2} \mathrm{e}^{x^{2}}(+c) \\ & \Rightarrow y=\mathrm{e}^{-\frac{1}{2} x^{2}}\left(\frac{1}{2} \mathrm{e}^{x^{2}}+c\right)=\frac{1}{2} \mathrm{e}^{\frac{1}{2} x^{2}}+c \mathrm{e}^{-\frac{1}{2} x^{2}} \end{aligned}$	B1 M1 A1 A1 4	For correct IF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$.their IF $)=x \mathrm{e}^{\frac{1}{2} x^{2}}$. their IF For correct integration both sides For correct solution AEF as $y=\mathrm{f}(x)$
$\begin{aligned} & (0,1) \Rightarrow c=\frac{1}{2} \\ & \Rightarrow y=\frac{1}{2}\left(\mathrm{e}^{\frac{1}{2} x^{2}}+\mathrm{e}^{-\frac{1}{2} x^{2}}\right) \end{aligned}$	M1 A1 2	For substituting $(0,1)$ into their GS, solving for c and obtaining a solution of the DE For correct solution AEF Allow $y=\cosh \left(\frac{1}{2} x^{2}\right)$
6		
$2 \text { (i) } \quad \begin{aligned} & \mathbf{n}=[2,1,-3] \times[-1,2,4] \\ &=[10,-5,5]=k[2,-1,1] \\ &(1,3,4) \Rightarrow 2 x-y+z=3 \end{aligned}$	M1 A1 A1 3	For using \times of direction vectors For correct \mathbf{n} For substituting (1, 3, 4) and obtaining AG (Verification only M0)
(ii) METHOD 1 $\begin{aligned} & \text { distance }=\frac{21-3}{\|\mathbf{n}\|} O R \frac{\|[1,3,4] \cdot[2,-1,1]-21\|}{\|\mathbf{n}\|} \\ & \begin{aligned} & O R \frac{\|([1,3,4]-[a, b, c]) \cdot[2,-1,1]\|}{\|\mathbf{n}\|} \begin{array}{c} \text { where }(a, b, c) \\ \text { is on } q \end{array} \\ &=\frac{18}{\sqrt{6}}=3 \sqrt{6} \end{aligned} \end{aligned}$	M1 B1 A1 3	For 21-3 OR $[1,3,4] \cdot[2,-1,1]-21$ OR $\|([1,3,4]-[a, b, c]) \cdot[2,-1,1]\|$ soi For $\|\mathbf{n}\|=\sqrt{6}$ soi For correct distance AEF
METHOD 2 $\begin{aligned} & {[1+2 t, 3-t, 4+t] \text { on } q} \\ & \Rightarrow 2(1+2 t)-(3-t)+(4+t)=21 \Rightarrow t=3 \\ & \Rightarrow \text { distance }=3\|\mathbf{n}\|=3 \sqrt{6} \end{aligned}$	M1 B1 A1	For forming and solving an equation in t For $\|\mathbf{n}\|=\sqrt{6}$ soi For correct distance AEF
METHOD 3 As Method 2 to $t=3 \Rightarrow(7,0,7)$ on q distance from $(1,3,4)$ $=\sqrt{(7-1)^{2}+(0-3)^{2}+(7-4)^{2}}=\sqrt{54}=3 \sqrt{6}$	$\begin{aligned} & \text { M1* } \\ & \text { M1 } \\ & \text { (*dep) } \\ & \text { A1 } \\ & \hline \end{aligned}$	For finding point where normal meets q For finding distance from ($1,3,4$) For correct distance AEF
6		
3 (i) $\begin{aligned} & \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \\ & \sin ^{4} \theta=\frac{1}{16}\left(z^{4}-4 z^{2}+6-4 z^{-2}+z^{-4}\right) \\ & \Rightarrow \sin ^{4} \theta=\frac{1}{16}(2 \cos 4 \theta-8 \cos 2 \theta+6) \\ & \Rightarrow \sin ^{4} \theta=\frac{1}{8}(\cos 4 \theta-4 \cos 2 \theta+3) \end{aligned}$	B1 M1 M1 A1 4	z or $\mathrm{e}^{\mathrm{i} \theta}$ may be used throughout For correct expression for $\sin \theta$ soi For expanding $\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{4}$ (with at least 3 terms and 1 binomial coefficient) For grouping terms and using multiple angles For answer obtained correctly AG
(ii) $\begin{aligned} & \int_{0}^{\frac{1}{6} \pi} \sin ^{4} \theta \mathrm{~d} \theta=\frac{1}{8}\left[\frac{1}{4} \sin 4 \theta-2 \sin 2 \theta+3 \theta\right]_{0}^{\frac{1}{6} \pi} \\ & =\frac{1}{8}\left(\frac{1}{8} \sqrt{3}-\sqrt{3}+\frac{1}{2} \pi\right)=\frac{1}{64}(4 \pi-7 \sqrt{3}) \end{aligned}$	M1 A1 M1 A1 4	For integrating (i) to $A \sin 4 \theta+B \sin 2 \theta+C \theta$ For correct integration For completing integration and substituting limits For correct answer AEF(exact)
8		

4 (i)

(ii) Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3} \pi \circlearrowleft$
$z_{1}-z_{3}=\overrightarrow{C A}, \quad z_{3}-z_{2}=\overrightarrow{B C}$
$\overrightarrow{B C}$ rotates through $\frac{2}{3} \pi$ to direction of $\overrightarrow{C A}$
$\triangle A B C$ has $B C=C A$, hence result
(iii) (ii) $\Rightarrow z_{1}+\omega z_{2}-(1+\omega) z_{3}=0$
$1+\omega+\omega^{2}=0 \Rightarrow z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$

B1 For correct interpretation of \times by ω (allow 120° and omission of, or error in, \circlearrowleft)

B1 For identification of vectors soi (ignore direction errors)
M1 \quad For linking $B C$ and $C A$ by rotation of $\frac{2}{3} \pi O R \omega$
A1 4 For stating equal magnitudes \Rightarrow AG
M1 For using $1+\omega+\omega^{2}=0$ in (ii)
A1 2 For obtaining AG

8

5 (i) Aux. equation $3 m^{2}+5 m-2(=0)$
M1 For correct auxiliary equation seen and solution attempted
$\Rightarrow m=\frac{1}{3},-2$
A1 For correct roots
CF $(y=) A \mathrm{e}^{\frac{1}{3} x}+B \mathrm{e}^{-2 x}$
PI $(y=) p x+q \Rightarrow 5 p-2(p x+q)=-2 x+13$
$\Rightarrow p=1, \quad q=-4$
GS $(y=) A \mathrm{e}^{\frac{1}{3} x}+B \mathrm{e}^{-2 x}+x-4$
A1 $\sqrt{ }$ For correct CF
f.t. from m with 2 arbitrary constants

M1 For stating and substituting PI of correct form
A1 A1 For correct value of p, and of q
B1 $\sqrt{ } 7$ For GS
f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI
(ii) $\left(0,-\frac{7}{2}\right) \Rightarrow A+B=\frac{1}{2}$

M1 For substituting $\left(0,-\frac{7}{2}\right)$ in their GS and obtaining an equation in A and B
$y^{\prime}=\frac{1}{3} A \mathrm{e}^{\frac{1}{3} x}-2 B \mathrm{e}^{-2 x}+1, \quad(0,0) \Rightarrow A-6 B=-3$
M1 For finding y^{\prime}, substituting $(0,0)$ and obtaining an equation in A and B
M1 For solving their 2 equations in A and B
$\Rightarrow A=0, B=\frac{1}{2} \quad$ A1 \quad For correct A and B CAO
$\Rightarrow(y=) \frac{1}{2} \mathrm{e}^{-2 x}+x-4$
B1 $\sqrt{ } 5$ For correct solution
f.t. with their A and B in their GS
(iii) $\quad x$ large $\Rightarrow(y=) x-4$

For correct equation or function
(allow \approx and \rightarrow) www
f.t. from (ii) if valid

$8 \text { (i) }$	$\begin{aligned} & \left((a, b)^{*}(c, d)\right)^{*}(e, f)=(a c, a d+b)^{*}(e, f) \\ & =(a c e, a c f+a d+b) \\ & (a, b)^{*}\left((c, d)^{*}(e, f)\right)=(a, b)^{*}(c e, c f+d) \\ & =(a c e, a c f+a d+b) \end{aligned}$	M1 A1 A1 3	For 3 distinct elements bracketed and attempt to expand For correct expression For correct expression again
(ii)	$\begin{aligned} & (a, b)^{*}(1,1)=(a, a+b),(1,1)^{*}(a, b)=(a, b+1) \\ & a+b=b+1 \Rightarrow a=1 \\ & \Rightarrow(1, b) \forall b \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1. } 3 \end{aligned}$	For combining both ways round For equating components (allow from incorrect pairs) For correct elements AEF
(iii	$\begin{aligned} & (m p, m q+n) O R(p m, p n+q)=(1,0) \\ & \Rightarrow(p, q)=\left(\frac{1}{m},-\frac{n}{m}\right) \end{aligned}$	M1 A1 2	For either element on LHS For correct inverse
(iv)	$\begin{aligned} & (a, b) *(a, b)=\left(a^{2}, a b+b\right)=(1,0) \\ & O R(a, b)=\left(\frac{1}{a},-\frac{b}{a}\right) \Rightarrow a^{2}=1, a b=-b \end{aligned}$ \Rightarrow self-inverse elements $(1,0)$ and $(-1, b) \forall b$	$\begin{aligned} & \text { M1 } \\ & \text { B1 A1 } \end{aligned}$	For attempt to find self-inverses For $(1,0)$. For $(-1, b)$ AEF
(v)	$(0, y)$ has no inverse for any $y \Rightarrow$ not a group	B1 1	For stating any one element with no inverse. Allow $x \neq 0$ required, provided reference to inverse is made "Some elements have no inverse" B0
		12	

1 (i)

$$
\begin{gathered}
\theta=\sin ^{-1} \frac{|[5,6,-7] \cdot[1,2,-1]|}{\sqrt{5^{2}+6^{2}+(-7)^{2}} \sqrt{1^{2}+2^{2}+(-1)^{2}}} \\
\theta=\sin ^{-1} \frac{24}{\sqrt{110} \sqrt{6}}=69.1^{\circ}(69.099 \ldots, 1.206) \\
\phi=\sin ^{-1} \frac{|[5,6,-7] \times[1,2,-1]|}{\sqrt{5^{2}+6^{2}+(-7)^{2}} \sqrt{1^{2}+2^{2}+(-1)^{2}}} \\
\phi=\sin ^{-1} \frac{\sqrt{84}}{\sqrt{110} \sqrt{6}}=20.9^{\circ} \Rightarrow \theta=69.1^{\circ}
\end{gathered}
$$

(ii) METHOD 1
$d=\frac{|1+12+3-40|}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}=\frac{24}{\sqrt{6}}=4 \sqrt{6} \approx 9.80$
METHOD 2
$(1+\lambda)+2(6+2 \lambda)-(-3-\lambda)=40$
$\Rightarrow \lambda=4 \Rightarrow d=4 \sqrt{6}$
OR distance from $(1,6,-3)$ to $(5,14,-7)$
$=\sqrt{4^{2}+8^{2}+(-4)^{2}}=\sqrt{96}$
METHOD 3
Plane through $(1,6,-3)$ parallel to p is
$x+2 y-z=16 \Rightarrow d=\frac{40-16}{\sqrt{6}}=\frac{24}{\sqrt{6}}$
M1 For finding parallel plane through (1, 6, -3)
A1 For correct distance

METHOD 4

e.g. $(0,0,-40)$ on p

M1 For using any point on p to find vector
\Rightarrow vector to $(1,6,-3)= \pm(1,6,37)$
$d=\frac{|[1,6,37] \cdot[1,2,-1]|}{\sqrt{6}}=\frac{24}{\sqrt{6}}$
METHOD 5
l meets p where $(1+5 t)+2(6+6 t)-(-3-7 t)=40$
A1 For correct distance
$\Rightarrow t=1 \Rightarrow d=|[5,6,-7]| \sin \theta$
M1

A1 For correct distance
For finding t where l meets p
and linking d with triangle

M1* For using scalar product of line and plane vectors
For both moduli seen
(*dep)
A1
A1 4 For correct angle
SR For vector product of line and plane vectors
M1* AND finding modulus of result
For moduli of line and plane vectors seen (*dep)
A1 For correct modulus $\sqrt{84}$
A1 correct angle
M1 For use of correct formula
A1 2 For correct distance

M1 For substituting parametric form into plane
A1 For correct distance
$\Rightarrow d=\sqrt{110} \frac{24}{\sqrt{110} \sqrt{6}}=\frac{24}{\sqrt{6}}$

2 (i) METHOD 1

$$
\text { EITHER } \begin{aligned}
\frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}} & =\frac{\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}}{\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}-\mathrm{e}^{\frac{1}{2} i \theta}} \\
& =\frac{2 \cos \frac{1}{2} \theta}{-2 \mathrm{i} \sin \frac{1}{2} \theta}=\mathrm{i} \cot \frac{1}{2} \theta
\end{aligned}
$$

OR in reverse with similar working

6

M1 EITHER For changing LHS terms to $\mathrm{e}^{ \pm \frac{1}{2} \mathrm{i} \theta}$
$O R$ in reverse For using $\cot \frac{1}{2} \theta=\frac{\cos \frac{1}{2} \theta}{\sin \frac{1}{2} \theta}$
For either of $\cos _{\operatorname{cin}} \frac{1}{2} \theta=\frac{\mathrm{e}^{\frac{1}{2} i} \theta}{(2)(\mathrm{i})}$ soi
For fully correct proof to AG
SR If factors of 2 or i are not clearly seen, award M1 M1 A0

2 (i) METHOD 2

$$
\begin{aligned}
& \text { EITHER } \frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}} \times \frac{1-\mathrm{e}^{-\mathrm{i} \theta}}{1-\mathrm{e}^{-\mathrm{i} \theta}}=\frac{\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}}{2-\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)} \\
& \text { OR } \frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta} \times \frac{1-\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta+\mathrm{i} \sin \theta} \\
& =\frac{2 \mathrm{i} \sin \theta}{2-2 \cos \theta}=\frac{2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta}=\mathrm{i} \cot \frac{1}{2} \theta
\end{aligned}
$$

For multiplying top and bottom by complex conjugate in exp or trig form

M1 For using both double angle formulae correctly
A1
For fully correct proof to AG
METHOD 3
$\frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta}=\frac{2 \cos ^{2} \frac{1}{2} \theta+2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 \sin ^{2} \frac{1}{2} \theta-2 \mathrm{i} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}$
$=\frac{2 \cos \frac{1}{2} \theta\left(\cos \frac{1}{2} \theta+\mathrm{i} \sin \frac{1}{2} \theta\right)}{2 \sin \frac{1}{2} \theta\left(\sin \frac{1}{2} \theta-\mathrm{i} \cos \frac{1}{2} \theta\right)}$
$=\mathrm{i} \cot \frac{1}{2} \theta \frac{\left(\sin \frac{1}{2} \theta-\mathrm{i} \cos \frac{1}{2} \theta\right)}{\left(\sin \frac{1}{2} \theta-\mathrm{i} \cos \frac{1}{2} \theta\right)}=\mathrm{i} \cot \frac{1}{2} \theta$
M1 For using both double angle formulae correctly

For appropriate factorisation

A1 For fully correct proof to AG

METHOD 4
$\frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta}=\frac{1+\frac{1-t^{2}}{1+t^{2}}+\mathrm{i} \frac{2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}-\mathrm{i} \frac{2 t}{1+t^{2}}}$
M1 For substituting both t formulae correctly
$=\frac{2+2 \mathrm{i} t}{2 t^{2}-2 \mathrm{i} t}=\frac{1}{t} \frac{1+\mathrm{i} t}{t-\mathrm{i}}=\frac{\mathrm{i}}{t} \frac{t-\mathrm{i}}{t-\mathrm{i}}=\mathrm{i} \cot \frac{1}{2} \theta$
M1 For appropriate factorisation
A1
For fully correct proof to AG
METHOD 5
$\frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}} \times \frac{1+\mathrm{e}^{\mathrm{i} \theta}}{1+\mathrm{e}^{\mathrm{i} \theta}}=\frac{1+2 \mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{2 \mathrm{i} \theta}}{1-\mathrm{e}^{2 \mathrm{i} \theta}}$
$=\frac{2+\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{\mathrm{e}^{-\mathrm{i} \theta}-\mathrm{e}^{\mathrm{i} \theta}}$
$=\frac{2(1+\cos \theta)}{-2 i \sin \theta}=\frac{2 \cos ^{2} \frac{1}{2} \theta}{-2 i \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}=\frac{\cos \frac{1}{2} \theta}{-i \sin \frac{1}{2} \theta}$
$=\mathrm{i} \cot \frac{1}{2} \theta$
(ii)

A1 3 For fully correct proof to AG
For multiplying top and bottom by $1+\mathrm{e}^{\mathrm{i} \theta}$
and attempting to divide by $\mathrm{e}^{\mathrm{i} \theta}$
$O R$ multiplying top and bottom by $1+\mathrm{e}^{-\mathrm{i} \theta}$
For using both double angle formulae correctly

For a circle centre O
A1 For indication of radius = 1
and anticlockwise arrow shown
B1 3 For locus of w shown as imaginary axis described downwards

3 (i)	METHOD 1 $m+4(=0) \Rightarrow \mathrm{CF}(y=) A \mathrm{e}^{-4 x}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For correct auxiliary equation (soi) For correct CF
	METHOD 2		
	Separating variables on $\frac{\mathrm{d} y}{\mathrm{~d} x}+4 y=0$ $\Rightarrow \ln y=-4 x$	M1	For integration to this stage
	$\Rightarrow \mathrm{CF}(y=) A \mathrm{e}^{-4 x}$	A1	For correct CF
(ii)	PI $(y=) p \cos 3 x+q \sin 3 x$	B1	For stating PI of correct form
	$y^{\prime}=-3 p \sin 3 x+3 q \cos 3 x$	M1	For substituting y and y^{\prime} into DE
	$\Rightarrow(-3 p+4 q) \sin 3 x+(4 p+3 q) \cos 3 x=5 \cos 3 x$	A1	For correct equation
	$\left.\begin{array}{r} -3 p+4 q=0 \\ 4 p+3 q=5 \end{array}\right\} \Rightarrow p=\frac{4}{5}, q=\frac{3}{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \end{aligned}$	For equating coeffs and solving For correct value of p, and of q
	GS ($y=A \mathrm{e}^{-4 x}+\frac{4}{5} \cos 3 x+\frac{3}{5} \sin 3 x$	B1 $\sqrt{ } 7$	For GS f.t. from their $\mathrm{CF}+\mathrm{PI}$ with 1 arbitrary constant in CF and none in PI
	SR Integrating factor method may be used, followed by 2 -stage integration by parts or $C+\mathrm{i} S$ method		
(iii)	$\mathrm{e}^{-4 x} \rightarrow 0, \frac{4}{5} \cos 3 x+\frac{3}{5} \sin 3 x=\sin _{\cos }(3 x+\alpha)$	M1	For considering either term
	$\Rightarrow-1 \leqslant y \leqslant 1 \quad$ OR $-1 \lesssim y \lesssim 1$	A1 $\sqrt{ } 2$	For correct range (allow <) CWO f.t. as $-\sqrt{p^{2}+q^{2}} \leqslant y \leqslant \sqrt{p^{2}+q^{2}}$ from (ii)
11			
4 (i)	$a b c=(a b) c=(b a) c=b(a c)=$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For using commutativity correctly For correct proof (use of associativity may be implied)
	$b(c a)=(b c) a=(c b) a=c b a$		
	Minimum working: $a b c=b a c=b c a=c b a$		
	OR $a b c=a c b=c a b=c b a$		
	$O R a b c=b a c=b c a=c b a$		
(ii)	$\{e, a\},\{e, b\},\{e, c\},\{e, b c\},\{e, c a\},\{e, a b\},\{e, a b c\}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	For any 5 subgroups For the other 2 subgroups and none incorrect
(iii)	$\{e, a, b, a b\},\{e, a, c, c a\},\{e, b, c, b c\}$	B1	For any 3 subgroups
	$\{e, a, b c, a b c\},\{e, b, c a, a b c\},\{e, c, a b, a b c\}$	B1	For 1 more subgroup
	$\{e, b c, c a, a b\}$	B1 3	For 1 more subgroup (5 in total) and none incorrect
(iv)	All elements ($\neq e$) have order 2	B1*	For appropriate reference to order of elements in G
	$O R$ all are self-inverse $O R$ no element of G has order 4		
	$O R$ no order 4 subgroup has a generator or is cyclic		
	$O R$ subgroups are of the form $\{e, a, b, a b\}$		
	(the Klein group)		
	\Rightarrow all order 4 subgroups are isomorphic	$\begin{aligned} & \text { B1 } \\ & (* \mathrm{dep}) 2 \end{aligned}$	For correct conclusion
		9	

$5 \quad \text { (i) }$	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=k u^{k-1} \frac{\mathrm{~d} u}{\mathrm{~d} x} \\ & \Rightarrow x k u^{k-1} \frac{\mathrm{~d} u}{\mathrm{~d} x}+3 u^{k}=x^{2} u^{2 k} \\ & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}+\frac{3}{k x} u=\frac{1}{k} x u^{k+1} \end{aligned}$	M1 A1 M1 A1 4	For using chain rule For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ For substituting for y and $\frac{d y}{d x}$ For correct equation AG
(ii)	$k=-1$	B1 1	For correct k
	$\begin{aligned} & \frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{3}{x} u=-x \Rightarrow \text { IF } \mathrm{e}^{-\int \frac{3}{x} \mathrm{~d} x}=\mathrm{e}^{-3 \ln x}=\frac{1}{x^{3}} \\ & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(u \cdot \frac{1}{x^{3}}\right)=-\frac{1}{x^{2}} \\ & \Rightarrow u \cdot \frac{1}{x^{3}}=\frac{1}{x}(+c) \Rightarrow y=\frac{1}{c x^{3}+x^{2}} \end{aligned}$	B1 $\sqrt{2}$ M1 A1 A1 A	For correct IF f.t. for $\mathrm{IF}=x^{\frac{3}{k}}$ using k or their numerical value for k For $\frac{\mathrm{d}}{\mathrm{d} x}(u$. their IF $)=-x$. their IF For correct integration both sides For correct solution for y
9			
6 (a)	Closure $\begin{aligned}(a x+b)+(c x+d) & =(a+c) x+(b+d) \\ & \in P\end{aligned}$	B1 B1	For obtaining correct sum from 2 distinct elements For stating result is in P $O R$ is of the correct form SR award this mark if any of the closure result, the identity or the inverse element is stated to be in $P O R$ of the correct form
	Identity $0 x+0$	B1	For stating identity (allow 0)
	Inverse $-a x-b$	B1	For stating inverse
(b) (i)	Order 9	B1* 1	For correct order
(ii)	$x+2$	B1 1	For correct inverse element
(iii)	$(a x+b)+(a x+b)+(a x+b)=3 a x+3 b$	M1	For considering sums of $a x+b$ and obtaining $3 a x+3 b$
	$\begin{aligned} & =0 x+0 \\ & \Rightarrow a x+b \text { has order } 3 \forall a, b \text { (except } a=b=0 \text {) } \end{aligned}$	A1	For equating to $0 x+0$ OR 0 and obtaining order 3
			SR For order 3 stated only $O R$ found from incomplete consideration of numerical cases award B1
	Cyclic group of order 9 has element(s) of order 9	$\begin{aligned} & \text { M1 } \\ & \text { (*dep) } \end{aligned}$	For reference to element(s) of order 9
	$\Rightarrow(Q,+(\bmod 3))$ is not cyclic	A1 4	For correct conclusion
		10	

8 (i)
$\operatorname{Re}(c+\mathrm{i} s)^{4}=\cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4}$
$\cos 4 \theta=c^{4}-6 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}$
$\Rightarrow \cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(ii) $\cos 4 \theta \cos 2 \theta=\left(8 c^{4}-8 c^{2}+1\right)\left(2 c^{2}-1\right)$
$=16 \cos ^{6} \theta-24 \cos ^{4} \theta+10 \cos ^{2} \theta-1$
(iii) $16 c^{6}-24 c^{4}+10 c^{2}-2=0$
$\Rightarrow\left(c^{2}-1\right)\left(8 c^{4}-4 c^{2}+1\right)=0$
For quartic, $b^{2}-4 a c=16-32<0$
$\Rightarrow c= \pm 1$ only $\Rightarrow \theta=n \pi$

For expanding $(c+\mathrm{i} s)^{4}$: at least 2 terms and 1 binomial coefficient needed For 3 correct terms
A1
M1 (*dep)
A1 4 For correct expression for $\cos 4 \theta$ CAO
For multiplying by $\left(2 c^{2}-1\right)$
B1 $\mathbf{1}$ to obtain AG WWW
M1 For factorising sextic
with $(c-1),(c+1)$ or $\left(c^{2}-1\right)$
A1 For justifying no other roots CWO
A1 3 For obtaining $\theta=n \pi \quad$ AG
Note that M1 A0 A1 is possible
SR For verifying $\theta=n \pi$ by substituting $c= \pm 1$
into $16 c^{6}-24 c^{4}+10 c^{2}-2=0 \quad$ B1
(iv) $16 c^{6}-24 c^{4}+10 c^{2}=0$
$\Rightarrow c^{2}\left(8 c^{4}-12 c^{2}+5\right)=0$
M1 For factorising sextic with c^{2}
For quartic, $b^{2}-4 a c=144-160<0$
$\Rightarrow \cos \theta=0$ only

A1 For justifying no other roots CWO
A1 3 For correct condition obtained AG
Note that M1 A0 A1 is possible
SR For verifying $\cos \theta=0$ by substituting $c=0$ into $16 c^{6}-24 c^{4}+10 c^{2}=0 \quad$ B1
SR For verifying $\theta=\frac{1}{2} \pi$ and $\theta=-\frac{1}{2} \pi$ satisfy $\cos 4 \theta \cos 2 \theta=-1 \quad \mathrm{~B} 1$

Question		Answer	Marks	Guidance
1	(i)	$\begin{aligned} & (y=x u \Rightarrow) \frac{\mathrm{d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \\ & x \frac{\mathrm{~d} u}{\mathrm{~d} x}+u=\frac{2+u^{2}}{u} \\ & \Rightarrow x \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{2}{u} \end{aligned}$	B1 M1 A1 [3]	For a correct statement For using the substitution to eliminate y (If B0, then y must be eliminated from LHS, but $\frac{d(u v)}{d x}$ sufficient) For correct equation AG
1	(ii)	$\begin{aligned} & \int u \mathrm{~d} u=\int \frac{2}{x} \mathrm{~d} x \\ & \Rightarrow \frac{1}{2} u^{2}=2 \ln ((k) x) \text { OR } \frac{1}{2} u^{2}=2 \ln x(+c) \\ & \Rightarrow \frac{1}{2}\left(\frac{y}{x}\right)^{2}=2 \ln (k x) \text { OR } \frac{1}{2}\left(\frac{y}{x}\right)^{2}=2 \ln x+c \\ & \Rightarrow y^{2}=4 x^{2} \ln (k x) \text { OR } y^{2}=4 x^{2} \ln x+C x^{2} \end{aligned}$	M1 A1 M1 A1 [4]	For separating variables and writing/attempting integrals For correct integration both sides (k or c not required here) For substituting for u into integrated terms with constant (on either side) For correct solution AEF $y^{2}=\mathrm{f}(x)$ Do not penalise " c " being used for different constants e.g. $2 \ln x+c=2 \ln (c x)$
2	(i)	$\begin{aligned} & \left(z^{n}-\mathrm{e}^{\mathrm{i} \theta}\right)\left(z^{n}-\mathrm{e}^{-\mathrm{i} \theta}\right) \equiv z^{2 n}-2 z^{n}\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)+1 \\ & \equiv z^{2 n}-(2 \cos \theta) z^{n}+1 \end{aligned}$	B1 [1]	For multiplying out to AG with evidence of $\cos \theta=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)$ (Can be implied by $2 \cos \theta=\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)$)

Question		Answer	Marks	Guidance
2	(ii)	METHOD 1 $\begin{aligned} & 2 \cos \theta=1 \Rightarrow \theta=\frac{1}{3} \pi \\ & \Rightarrow z^{4}-z^{2}+1 \equiv\left(z^{2}-\mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right)\left(z^{2}-\mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}\right) \\ & \equiv\left(z+\mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}\right)\left(z+\mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}\right) \\ & \equiv\left(z-\mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{5}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{7}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{11}{6} \pi \mathrm{i}}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [6] } \\ & \hline \end{aligned}$	For using (i) to find θ For correct quadratic factors (Or $\frac{5 \pi}{3} i$ in place of $-\frac{\pi}{3} i$) For factorising $\left(z^{2}-a^{2}\right)$ For correct linear factors For adjusting arguments (must attempt correct range and " $(z-$ root)") For correct factors CAO Correct answer www gets 6
		METHOD 2 $\begin{aligned} & z^{4}-z^{2}+1=0 \Rightarrow z^{2}=\frac{1}{2} \pm \frac{1}{2} \sqrt{3} \mathrm{i}=\mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}, \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}} \\ & \Rightarrow z= \pm \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}, \pm \mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}} \\ & =\mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}, \mathrm{e}^{\frac{7}{6} \pi \mathrm{i}}, \mathrm{e}^{\frac{5}{6} \pi \mathrm{i}}, \mathrm{e}^{\frac{11}{6} \pi \mathrm{i}} \\ & \Rightarrow\left(z-\mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{5}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{7}{6} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{11}{6} \pi \mathrm{i}}\right) \end{aligned}$	M1 A1 M1 A1 M1 A1	For solving quadratic For correct roots in exp form For attempt to find 4 roots For correct roots $\pm \mathrm{e}^{\mathrm{i} \alpha}$ For adjusting arguments For correct factors CAO
3	(i)	METHOD 1 $\begin{aligned} & (y x)(y x)^{-1}=e \Rightarrow x(y x)^{-1}=y^{-1} \\ & \Rightarrow(y x)^{-1}=x^{-1} y^{-1} \end{aligned}$ METHOD 2 Compare $(y x)(y x)^{-1}=e$ with $y x x^{-1} y^{-1}=e$ $\Rightarrow(y x)^{-1}=x^{-1} y^{-1}$	M1 A1 [2] M1 A1	For starting point and appropriate multiplication For correct result AG For appropriate comparison For correct result AG For A1, proof cannot be written in the form 'LHS = RHS $\rightarrow \ldots \rightarrow$ $e=e^{\prime}$

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & x^{n} y^{n}=(x y)^{n}=x(y x)^{n-1} y \\ & \Rightarrow x^{-1} x^{n} y^{n} y^{-1}=x^{-1} x(y x)^{n-1} y y^{-1} \\ & \Rightarrow x^{n-1} y^{n-1}=(y x)^{n-1} \end{aligned}$	M1 M1 A1 [3]	For using associativity or an inverse with respect to LHS, RHS or initial equality www beforehand For using $(x y)^{n}=x(y x)^{n-1} y \mathbf{0 e}$ For correct result AG SR for numerical n used, allow M1 M1 only
3	(iii)	METHOD 1 All steps in (ii) are reversible \Rightarrow result follows METHOD 2 Show working for (ii) in reverse \Rightarrow result follows	B1*dep B1*dep [2] B1* B1*dep	For correct reason. Dep on correct part(ii) For correct conclusion For correct working For correct conclusion

Question		Answer	Marks	Guidance
4	(i)	METHOD 1 (M, then distance) $\begin{aligned} & M=(1+2 t, 1+3 t,-1+2 t) \\ & \mathbf{A M}=(\pm)[2 t-6,3 t-2,2 t-8] \end{aligned}$ AM perp. $l \Rightarrow 2(2 t-6)+3(3 t-2)+2(2 t-8)=0$ $\begin{aligned} & \Rightarrow t=2, M=(5,7,3) \\ & A M=\sqrt{2^{2}+4^{2}+4^{2}}=6 \end{aligned}$ METHOD 2(a) (distance, then M) $\begin{aligned} & (C=(1,1,-1)) \mathbf{A C}= \pm[6,2,8] \\ & \mathbf{n}=\mathbf{A C} \times[2,3,2]=k[-20,4,14] \\ & d=\frac{\|\mathbf{n}\|}{\|[2,3,2]\|}=\frac{\sqrt{612}}{\sqrt{17}}=6 \\ & C M=\sqrt{\left(6^{2}+2^{2}+8^{2}\right)-6^{2}}=2 \sqrt{17} \\ & \|[2,3,2]\|=\sqrt{17} \Rightarrow t=2, M=(5,7,3) \end{aligned}$ METHOD 2(b) $\begin{aligned} & (C=(1,1,-1)) \mathbf{A C}= \pm[6,2,8] \\ & \cos \theta=\frac{A C \cdot(2,3,2)}{\|A C\|\|(2,3,2)\|}, \theta=36.0(39 . .) \text { or } \quad \sin \theta=\frac{153}{\sqrt{442}} \\ & \|A M\|=\|A C\| \sin \theta=6 \\ & M=(5,7,3) \end{aligned}$	B1 B1 FT M1 A1 A1 M1 A1 [7] B1 M1 A1 FT A1 M1 B1 A1 B1 M1,A1 M1,A1 M1,A1	Coordinates or vectors allowed throughout For correct parametric form soi For correct vector. FT from M For using perpendicular condition For correct equation For correct coordinates For using distance formula For correct distance For correct vector For finding $\mathbf{A C} \times$ direction of l For correct $\|\mathbf{n}\|$. FT from \mathbf{n} For correct distance For a correct method for finding position of M For $\|[2,3,2]\|=\sqrt{17}$ soi For correct vector As above

Question		Answer	Marks	Guidance
4	(ii)	$\begin{aligned} & \mathbf{A M}=[-2,4,-4] \text { or } \mathbf{M A}=[2,-4,4] \\ & \Rightarrow B=(7,3,7)+\frac{3}{4}(-2,4,-4)=\left(7-\frac{3}{2}, 3+3,7-3\right) \end{aligned}$ OR $B=(5,7,3)+\frac{1}{4}(2,-4,4)=\left(5+\frac{1}{2}, 7-1,3+1\right)$ OR $\begin{aligned} & B=\frac{3}{4}(5,7,3)+\frac{1}{4}(7,3,7)=\left(\frac{15}{4}+\frac{7}{4}, \frac{21}{4}+\frac{3}{4}, \frac{9}{4}+\frac{7}{4}\right) \\ & B=\left(\frac{11}{2}, 6,4\right) \end{aligned}$	M1 M1 A1 [3]	For using $A+k_{1} \overrightarrow{A M}$ or $M+k_{2} \overrightarrow{M A}$ or ratio theorem or equivalent For $B=(7,3,7)+\frac{3}{4} x^{\prime}$ their $(-2,4,-4)$ oe (or M1 for quadratic in parameter for line AM, followed by M1 for attempt to use correct value of parameter to find B) For correct coordinates
5	(i)	$\begin{aligned} & \left(2 m^{2}+3 m-2=0\right) \Rightarrow m=\frac{1}{2},-2 \\ & \mathrm{CF}=A \mathrm{e}^{\frac{1}{2} x}+B \mathrm{e}^{-2 x} \end{aligned}$	M1 A1 [2]	For attempt to solve correct auxiliary equation For correct CF
5	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=p \mathrm{e}^{-2 x}-2 p x \mathrm{e}^{-2 x} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4 p \mathrm{e}^{-2 x}+4 p x \mathrm{e}^{-2 x} \\ & \Rightarrow(-8 p+3 p+8 p x-6 p x-2 p x) \mathrm{e}^{-2 x}=5 \mathrm{e}^{-2 x} \\ & \Rightarrow p=-1 \end{aligned}$	M1 A1 M1 A1 [4]	For differentiating PI twice, using product rule For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ For substituting into DE For correct p

Question		Answer	Marks	Guidance
5	(iii)	$\begin{aligned} & \mathrm{GS}(y=) A \mathrm{e}^{\frac{1}{2} x}+B \mathrm{e}^{-2 x}-x \mathrm{e}^{-2 x} \\ & (0,0) \Rightarrow A+B=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} A \mathrm{e}^{\frac{1}{2} x}-2 B \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x} \\ & \left(0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=4\right) \Rightarrow \frac{1}{2} A-2 B=5 \\ & \Rightarrow A=2, B=-2 \\ & \Rightarrow y=2 \mathrm{e}^{\frac{1}{2} x}-2 \mathrm{e}^{-2 x}-x \mathrm{e}^{-2 x} \end{aligned}$	B1 FT B1 FT M1 M1 A1 [5]	For GS soi. FT from CF (2 constants) and p For correct equation. FT from GS of form $A \mathrm{e}^{\alpha x}+B \mathrm{e}^{\beta x}-C x \mathrm{e}^{-2 x}$ For differentiating GS and substituting values, using GS of form $A \mathrm{e}^{\alpha x}+B \mathrm{e}^{\beta x}-C x \mathrm{e}^{-2 x}$ For solving for A and B (can be gained from incorrect GS) For correct solution, including $y=$
6	(i)	METHOD 1 $\begin{aligned} & \mathbf{n}=[2,-1,-1] \times[2,-3,-5]=[2,8,-4] \\ & \mathbf{n}=k[1,4,-2] \end{aligned}$ Π is $\mathbf{r} \cdot \mathbf{n}=[1,6,7] . \mathbf{n}$ $\Rightarrow \mathbf{r} \cdot[1,4,-2]=11$ METHOD 2 $\begin{aligned} & y-z=-1+2 \mu \\ & \mu=\frac{y-z+1}{2} \\ & \lambda=7-z-5 \frac{y-z+1}{2} \\ & x=11+2 z-4 y \\ & r .(1,4,-2)=11 \end{aligned}$	M1 A1 M1 A1 M1 M1 A1 A1 [4]	For finding vector product of 2 vectors in Π (or 2 scalar products $=$ 0 , with attempt to solve) For correct n For attempt to find equation of Π, including cartesian equation For correct equation (allow multiples) For both $\lambda \& \mu$ AEF

Question		Answer	Marks	Guidance
6	(ii)	$\begin{aligned} & {[7+3 t, 4,1-t] \cdot \mathbf{n}=11 \Rightarrow t=-2} \\ & \Rightarrow[1,4,3] \end{aligned}$	M1 A1 [2]	For attempt to find t, (or to find λ and μ by equating original equations) For correct position vector $O R$ point
6	(iii)	METHOD 1 $\mathbf{c}=[1,4,-2] \times[2,-1,-1]$ $\mathbf{c}=k[2,1,3]$ METHOD 2 $\begin{aligned} & \mathbf{c}=[2,-3,-5]+s[2,-1,-1] \\ & \mathbf{c} \cdot[2,-1,-1]=0 \Rightarrow \\ & 2(2+2 s)-1(-3-s)-1(-5-s)=0 \\ & \Rightarrow s=-2 \Rightarrow \mathbf{c}=k[2,1,3] \end{aligned}$	M1 M1 A1 [3] M1 M1 A1	For using given vector product (or 2 correct 'scalar products $=0$ ') For calculating given vector product (or 2 correct scalar products $=$ 0, with attempt to solve) (or M1 for using vector product of c with n or $(2,-1,-1)$ in an equation, followed by M1 for calculating vector product and attempting to solve) For correct c For $\mathrm{c}=$ linear combination of $[2,-3,-5]$ and $[2,-1,-1]$ For an equation in s from $\mathbf{c} \cdot[2,-1,-1]=0$ For correct c

Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & \left(\begin{array}{ll} 1 & 0 \\ n & 1 \end{array}\right)\left(\begin{array}{cc} 1 & 0 \\ m & 1 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ n+m & 1 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ m+n & 1 \end{array}\right) \\ & =\left(\begin{array}{cc} 1 & 0 \\ m & 1 \end{array}\right)\left(\begin{array}{ll} 1 & 0 \\ n & 1 \end{array}\right) \Rightarrow \text { commutative } \end{aligned}$	M1 A1 [2]	For multiplying 2 distinct matrices of the correct form both ways, or generalised form at least one way, For stating or implying that addition is commutative and correct conclusion SR Use of numerical matrices must be generalised for any credit
7	(ii)	$(I=)\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$ EITHER $\left(\begin{array}{ll} 1 & 0 \\ 2 & 1 \end{array}\right)^{-1}=\left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 4 & 1 \end{array}\right)$ OR $\left(\begin{array}{ll} 1 & 0 \\ 2 & 1 \end{array}\right)\left(\begin{array}{ll} 1 & 0 \\ n & 1 \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \Rightarrow 2+n=0 \Rightarrow\left(\begin{array}{ll} 1 & 0 \\ 4 & 1 \end{array}\right)$	B1 M1 A1 [3]	For correct identity For using inverse property For correct inverse
7	(iii)	$\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ has order 2 4 is not a factor of 6	B1 B1 [2]	For correct order For correct reason (Award B0 for "Lagrange" only). Must be explicit about the ' 6 '
7	(iv)	$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ OR $\left(\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right)$ has order $6,($ or $>3)$ OR (M, \times) is cyclic, G is non-cyclic (having no element of order 6) OR (M, \times) is commutative G is not commutative (being the non-cyclic group) \Rightarrow groups are not isomorphic	B1*dep [2]	For stating (that there is) an element of M with order 6 Award B1* for a relevant statement about M and G For correct conclusion and no false statements attached to conclusion

Question		Answer	Marks	Guidance
8	(i)	$\begin{aligned} & \cos 5 \theta+\mathrm{i} \sin 5 \theta= \\ & c^{5}+5 \mathrm{i} c^{4} s-10 c^{3} s^{2}-10 \mathrm{i} c^{2} s^{3}+5 c s^{4}+\mathrm{i} s^{5} \\ & \Rightarrow \tan 5 \theta=\frac{\sin 5 \theta}{\cos 5 \theta}=\frac{5 c^{4} s-10 c^{2} s^{3}+s^{5}}{c^{5}-10 c^{3} s^{2}+5 c s^{4}} \end{aligned}$ Division of numerator \& denominator by c ${ }^{5}$. $\Rightarrow \tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$	B1 M1 M1 A1 [4]	For explicit use of de Moivre with $n=5$ For correct expressions for $\sin 5 \theta$ and $\cos 5 \theta$ For $\frac{\sin 5 \theta}{\cos 5 \theta}$ in terms of c and s For simplifying to AG, www with explicit mention of division by c^{5}
8	(ii)	$\begin{aligned} & 5 \theta=\{1,5,9,13,17\} \frac{1}{4} \pi \\ & \theta=\{1,5,9,13,17\} \frac{1}{20} \pi \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For at least 2 of given values and no extras. For at least 3 values of θ and no extras in range For all 5 values and no extras outside range
8	(iii)	$\begin{aligned} & \tan 5 \theta=1 \Rightarrow t^{5}-5 t^{4}-10 t^{3}+10 t^{2}+5 t-1=0 \\ & \Rightarrow(t-1)\left(t^{4}-4 t^{3}-14 t^{2}-4 t+1\right)=0 \\ & \tan \alpha=1 \text { OR } \alpha=\frac{1}{4} \pi \end{aligned}$ is not included in roots of the quartic $\Rightarrow t=\tan \alpha \text { for } \alpha=\{1,9,13,17\} \frac{1}{20} \pi$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { B1 } \\ \\ \text { M1*dep } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	For $\tan 5 \theta=1$ and equation in t For correct factors For solution rejected (may be implied by $\frac{5}{20} \pi$ not appearing in set of solutions) For 2 correct values of t For all 4 values and no more in range

Question		AnswerMETHOD 1 $\mathbf{b}=[1,-3,4] \times[3,1,2]=[-10,10,10]$ $=k[-1,1,1]$$\Rightarrow \mathbf{r}=[1,4,2]+t[-1,1,1]$METHOD 2$[x, y, z] \cdot[1,-3,4]=0 \Rightarrow x-3 y+4 z=0$$[x, y, z] \cdot[3,1,2]=0 \Rightarrow 3 x+y+2 z=0$Solving $\Rightarrow[x, y, z]=\mathbf{b}=k[-1,1,1]$	MarksM1M1A1B1 FT[4]M1M1A1B1FT	Guidance	
1				For attempt to find vector product of directions Correct calculation of vector product For correct \mathbf{b}. For correct equation. FT from b For an equation from l_{2} perpendicular to normal of plane and an equation from l_{2} perpendicular to l_{1} For correct equation. FT. from \mathbf{b}	Allow 1 error Must show "r ="
2	(i)	$\begin{aligned} & z^{4}=4\left(\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right)=4 \operatorname{cis} \frac{1}{3} \pi \\ & z=\sqrt{2} \operatorname{cis}\left(k \frac{\pi}{12}\right), \quad k=1,7,13,19 \end{aligned}$	B1 M1 A1 A1 B1 [5]	For $\arg \left(z^{4}\right)=\frac{1}{3} \pi$ soi For dividing $\arg \left(z^{4}\right)$ by 4 For any 2 correct values of k For all 4 values of k and no extras. Ignore values outside range For modulus of all stated roots $=\sqrt{2}$ SR For $\arg \left(z^{4}\right)=\frac{1}{6} \pi$ award B0 M1 A1 FT for all $\operatorname{cis}\left(k \frac{\pi}{24}\right), k=1,13,25,37, \mathrm{~A} 0 \mathrm{~B} 0 / \mathrm{B} 1$	For second A1, must be in correct form. Don't accept 1.41.. or $\sqrt[4]{4}$

Question		Answer	Marks	Guidance	
2	(ii)		B1 B1 B1 [3]	For roots forming a square, centre O, on equal-scale axes. For z^{4} and only one root in first quadrant with arguments in ratio approximately $3: 1$ For $\left\|z^{4}\right\|:\|z\| \approx 4: \sqrt{2}$ (allow (2,4):1)	Must be roots distinct from z^{4} Penalise once use of points not lines For all four roots
3		$\begin{aligned} & \text { Integrating factor }=\mathrm{e}^{\int \cot x \mathrm{~d} x}=\mathrm{e}^{\ln \sin x}=\sin x \\ & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}(y \sin x)=2 x \sin x \\ & \Rightarrow y \sin x=-2 x \cos x+\int 2 \cos x \mathrm{~d} x \\ & \Rightarrow y \sin x=-2 x \cos x+2 \sin x(+c) \\ & \left(\frac{1}{6} \pi, 2\right) \Rightarrow c=\frac{1}{6} \pi \sqrt{3} \\ & \Rightarrow y=-2 x \cot x+2+\frac{1}{6} \pi \sqrt{3} \operatorname{cosec} x \end{aligned}$	M1 A1 M1 M1* A1 A1 M1dep A1 FT A1	For IF $=\mathrm{e}^{ \pm \ln \sin x}$ OR $\mathrm{e}^{ \pm \ln \cos x}$ For simplified IF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$.their IF $)=2 x$.their IF For attempt to integrate RHS using parts for $\int x\left\{\begin{array}{l}\sin x \\ \cos x\end{array} \mathrm{~d} x\right.$ For correct RHS 1st stage oe For substituting $\left(\frac{1}{6} \pi, 2\right)$ into their GS (with c) For correctly finding c (FT from GS) For correct solution AEF of standard notation $y=\mathrm{f}(x)$	(Must use u = (2)x) $\mathrm{c}=0.907$

Question		Answer	Marks	Guidance	
4	(i)	$\left.\begin{array}{c\|ccccc\|cccc}H & e & r & r^{2} & r^{3} \\ \hline e & e & r & r^{2} & r^{3} & & K & e & p & q\end{array}\right) p q$	B2 B2 [4]	For correct table for H For correct table for K SR In both tables allow B1 for 1 or 2 errors	
4	(ii)	Identity $=b$	$\begin{aligned} & \hline \text { B1 } \\ & \text { [1] } \end{aligned}$	For correct identity	
4	(iii)	G is isomorphic to H	B1 B1 B1 B1 [4]	For H identified as isomorphic to G (may be implied by table) For $a \leftrightarrow r^{2}$ at least once For $c, d \leftrightarrow r, r^{3}$ either way For $c, d \leftrightarrow r, r^{3}$ both ways and b corresponds to e explicit. Award fourth B1 only for completely correct answer. If none of last 3 marks gained, then SC1 for order of all elements of G and H	
5	(i)	METHOD 1 $\begin{aligned} & \sin ^{3} \theta \cos ^{2} \theta=\left(\frac{\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}}{2 \mathrm{i}}\right)^{3}\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)^{2} \\ & =-\frac{1}{32 \mathrm{i}}\left(z^{3}-3 z+3 z^{-1}-z^{-3}\right)\left(z^{2}+2+z^{-2}\right) \end{aligned}$ $\begin{aligned} & =-\frac{1}{32 \mathrm{i}}\left(\left(z^{5}-z^{-5}\right)-\left(z^{3}-z^{-3}\right)-2\left(z-z^{-1}\right)\right) \\ & =-\frac{1}{16}\left(\frac{z^{5}-z^{-5}}{2 \mathrm{i}}-\frac{z^{3}-z^{-3}}{2 \mathrm{i}}-2 \frac{z-z^{-1}}{2 \mathrm{i}}\right) \\ & =-\frac{1}{16}(\sin 5 \theta-\sin 3 \theta-2 \sin \theta) \end{aligned}$	B1 M1 M1 B1 M1 A1 [6]	z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout For $\left(\frac{\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}}{2 \mathrm{i}}\right) O R\left(\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}\right)$ soi For expanding brackets (binomial theorem or otherwise) For full expansion with 12 terms. For $-\frac{1}{32 i}$ For grouping terms This step, oe, is needed for the final mark For simplification to AG WWW	two brackets expanded soi by alternate method Can be seen at any stage oe includes replacing $z^{5}-z^{-5}$ with 2 isin 5θ etc

Question	METHOD 2 $\sin ^{3} \theta \cos ^{2} \theta=\sin ^{3} \theta-\sin ^{5} \theta$ $2 i \sin \theta=z-\frac{1}{z}$ $-8 i \sin ^{3} \theta=z^{3}-3 z+\frac{3}{z}-\frac{1}{z^{3}}$ $=\left(z^{3}-\frac{1}{z^{3}}\right)-\left(3 z-\frac{3}{z}\right)$ $=2 i \sin 3 \theta-6 i \sin \theta$	Marks	B1	

Question		Answer METHOD 1 $\begin{aligned} & m^{2}+4 m=0 \Rightarrow m=0,-4 \\ & \mathrm{CF}=A+B \mathrm{e}^{-4 x} \\ & \text { PI } y=p \mathrm{e}^{2 x} \Rightarrow 4 p+8 p=12 \end{aligned}$ $\begin{aligned} & \Rightarrow p=1 \\ & \text { GS } y=A+B e^{-4 x}+e^{2 x} \end{aligned}$ METHOD 2 $\begin{aligned} & \text { Integrating } \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}+4 y=6 \mathrm{e}^{2 x}+c \\ & \text { IF } \mathrm{e}^{4 x} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y \mathrm{e}^{4 x}\right)=6 \mathrm{e}^{6 x}+c \mathrm{e}^{4 x} \\ & \Rightarrow y \mathrm{e}^{4 x}=\mathrm{e}^{6 x}+\frac{1}{4} c \mathrm{e}^{4 x}+B \\ & \Rightarrow y=\mathrm{e}^{2 x}+A+B \mathrm{e}^{-4 x} \end{aligned}$	Marks M1 A1 B1 M1 A1 B1 FT [6] M1 B1 B1 $\sqrt{\text { M1 }}$ A1 A1	Guidance	
6	(i)			For attempt to solve correct auxiliary equation For correct CF For PI of correct form seen For differentiating PI and substituting For correct p For using GS $=$ CF + PI with 2 arbitrary constants in GS and none in PI For attempt to integrate equation For $+c$ included For correct IF. f.t. from their DE For multiplying through by their IF and attempting to integrate For correct integration both sides, including $+B$ For correct solution	Beware poor use of pxe ${ }^{2 x}$ Scores maximum of M1 A1 B0 M1 A0 B0 Must include " $y=$ "
6	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-4 B \mathrm{e}^{-4 x}+2 \mathrm{e}^{2 x} \\ & \left(0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6\right) \Rightarrow-4 B+2=6 \Rightarrow B=-1 \\ & \left(y \approx \mathrm{e}^{2 x} \Rightarrow\right) A=0 \\ & \Rightarrow y=-\mathrm{e}^{-4 x}+\mathrm{e}^{2 x} \end{aligned}$	M1 A1 B1 A1 [4]	For differentiating "their GS" with 2 arbitrary constants and substituting values to obtain an equation For correct B For correct A and consistent with" their GS" For correct equation www	If "their CF" is $(A+B x) \mathrm{e}^{-4 x}$ can score max of M1 A0 B1 A0
7	(i)	$\mathbf{m}=\mathbf{v}+\frac{1}{2}(\mathbf{w}-\mathbf{v}) \Rightarrow$ $\overrightarrow{U M}=\mathbf{v}+\frac{1}{2}(\mathbf{w}-\mathbf{v})-\mathbf{u}=\frac{1}{2}(\mathbf{v}+\mathbf{w}-2 \mathbf{u})$	M1 A1 [2]	For using vector triangle, or equivalent, for M For correct expression AG SR Allow use of ratio theorem	$\begin{aligned} & \overrightarrow{U M}=\overrightarrow{U V}+\overrightarrow{V M} \\ & =(\mathbf{v}-\mathbf{u})+\frac{1}{2}(\mathbf{w}-\mathbf{v}) \end{aligned}$ Minimum $-\mathbf{u}+\frac{1}{2}(\mathbf{v}+\mathbf{w})$

| Question | | | Answer | Marks | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | | | | | |

Question		Answer	Marks	Guidance	
7	(iv)	METHOD 1 $\mathbf{n}=[1,0,-1] \times[0,1,-1](\mathrm{etc})=k[1,1,1]$	M1*	For attempt to find \mathbf{n}	May see use of $\frac{\|p \cdot n-d\|}{\|n\|}$
		$U V W$ is $\mathbf{r} . \mathbf{n}=[1,0,0] \cdot[1,1,1]=1$	M1dep	For substituting a point	
		$\Rightarrow d=\frac{1}{\sqrt{3}}$	A1	For correct d	
		METHOD 2	[3]		
		$U V W$ is $x+y+z=1$ (from given $\mathbf{u}, \mathbf{v}, \mathbf{w}$)	M2	For attempt to find cartesian equation	
		$\Rightarrow d=\frac{1}{\sqrt{3}}$ METHOD 3	A1	For correct d	
		$\overrightarrow{O G}=\frac{1}{3}(\mathbf{u}+\mathbf{v}+\mathbf{w})$	M1*	For stating or implying $\|\overrightarrow{O G}\|$ is d	
		$\Rightarrow O G=\sqrt{\frac{1}{9}+\frac{1}{9}+\frac{1}{9}}$	M1dep	For finding magnitude	
		$\Rightarrow d=\frac{1}{\sqrt{3}}$	A1	For correct d	

Question		Answer	Marks	Guidance	
8	(i)	For $R, \cos ^{2} \theta+\sin ^{2} \theta=1 \Rightarrow \mathrm{ad}-\mathrm{bc}=1(\Rightarrow$ $R \subset M)$	B1	For showing $R \subset M$	
		$R(\theta) R(\phi)=R(\theta+\phi)$ and hence closed, since $\cos \theta \cos \phi-\sin \theta \sin \phi=\cos (\theta+\phi)$ and	M1	For multiplying 2 distinct elements	
		$\pm(\cos \theta \sin \phi+\sin \theta \cos \phi)= \pm \sin (\theta+\phi)$	A1	For obtaining $R(\theta) R(\phi) \in R$	Must demonstrate use of compound angles or explain rotations.
		Identity $\theta=0 \Rightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in R$	B1	For identity element related to $\theta=0$	
		$\text { Inverse } \begin{aligned} R(-\theta) & =\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \\ & =\left(\begin{array}{cc} \cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta) \end{array}\right) \end{aligned}$	B1 B1	For inverse elementconverted to form of elements of R	
		SR For use of $\left(a, b \in R \Rightarrow a b^{-1} \in R\right) \Leftrightarrow R$ is a subgroup of M	[6]		
		For $R, \cos ^{2} \theta+\sin ^{2} \theta=1 \Rightarrow R \subset M$	B1	For showing $R \subset M$	
		$R(\theta) R(\phi)^{-1}=\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right)\left(\begin{array}{cc} \cos (-\phi) & -\sin (-\phi) \\ \sin (-\phi) & \cos (-\phi) \end{array}\right)$	B1	For considering $R(\theta) R(\phi)^{-1}$	
			$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	For correct inverse For multiplying elements	
		$=\left(\begin{array}{cc} \cos (\theta-\phi) & -\sin (\theta-\phi) \\ \sin (\theta-\phi) & \cos (\theta-\phi) \end{array}\right) \in R$	A1	For correct product	
		Set is non-empty	B1	Can be implied by identity element related to $\theta=0$	

Question		Answer For $\theta=\frac{1}{3} k \pi$ elements are $\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \sqrt{3} \\ \frac{1}{2} \sqrt{3} & \frac{1}{2} \end{array}\right),\left(\begin{array}{cc} -\frac{1}{2} & -\frac{1}{2} \sqrt{3} \\ \frac{1}{2} \sqrt{3} & -\frac{1}{2} \end{array}\right)$	Marks B1 M1	Guidance	
8	(ii)			For $\theta=\frac{1}{3} \pi$ soi For using "their θ " in $\left(\begin{array}{cc}\cos k \theta & \sin k \theta \\ -\sin k \theta & \cos k \theta\end{array}\right)$ for at least 2 values of k, or lists all 6 values of θ For identity and one other element other than (-I) For 2 more elements For all 6 elements correct	Allow degrees instead of radians.

Question		Answer$\cos \theta=\frac{\left\|\left(\begin{array}{l} 1 \\ 2 \\ 5 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right)\right\|}{\sqrt{1^{2}+2^{2}+5^{2}} \sqrt{2^{2}+(-1)^{2}+3^{2}}}=\frac{15}{\sqrt{30} \sqrt{14}}$$\theta=0.750 \text { or } 43.0^{\circ}$	Marks M1 A1 A1 [3]	Guidance	
1	(i)			Accept unsimplified If zero, then $\mathbf{s c} \mathbf{1}$ for $\mathrm{n}_{1} \cdot \mathrm{n}_{2}=15$ seen	
1	(ii)	$\begin{aligned} & \left(\begin{array}{l} 1 \\ 2 \\ 5 \end{array}\right) \times\left(\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right)=\left(\begin{array}{c} 11 \\ 7 \\ -5 \end{array}\right) \\ & (\mathrm{eg}) x=0 \Rightarrow 2 y+5 z=12,-y+3 z=5 \Rightarrow y=1, z=2 \\ & \mathbf{r}=\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{c} 11 \\ 7 \\ -5 \end{array}\right) \end{aligned}$ Alternative: Find one point Find a second point and vector between points multiple of $\left(\begin{array}{c}11 \\ 7 \\ -5\end{array}\right)$ $\mathbf{r}=\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{c} 11 \\ 7 \\ -5 \end{array}\right)$	M1 A1 M1 A1 [4] M1 M1 A1 A1	oe vector form	M1 requires evidence of method for cross product or at least 2 correct values calculated or any valid point e.g.(-11/7, 0, 19/7) (22/5, 19/5, 0) Must have full equation including 'r $=$ '

Question		Answer		Guidance	
		Alternative: Solve simultaneously Point found Direction found $\mathbf{r}=\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{c} 11 \\ 7 \\ -5 \end{array}\right)$	M1 A1 A1 A1	to at least expressions for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ parametrically, or two relationship between 2 variables.	
2	(i)	$\begin{aligned} & \text { identity } 0+0 \mathrm{i} \\ & \text { order } 25 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Or '0'	
2	(ii)	$3+\mathrm{i}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
2	(iii)	$5(a+b i)=5 a+5 b i=0+0 i$ every non-zero element has order 5 or 25 So order is 5	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Shows 5 times any element equals e Attempt to show that order $\neq 2,3,4$ Argument is convincing, exhaustive and conclusive.	Must consider all(non-zero) elements
3		$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}-3 \frac{y}{x}=x^{3} \mathrm{e}^{2 x} \\ & I=\exp \left(\int-\frac{3}{x} \mathrm{~d} x\right)=\mathrm{e}^{-3 \ln x} \\ & =x^{-3} \\ & x^{-3} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 x^{-4} y=\mathrm{e}^{2 x} \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{-3} y\right)=\mathrm{e}^{2 x} \\ & x^{-3} y=\frac{1}{2} \mathrm{e}^{2 x}+A \\ & x=1, y=0 \Rightarrow A=-\frac{1}{2} \mathrm{e}^{2} \\ & y=\frac{1}{2} x^{3}\left(\mathrm{e}^{2 x}-\mathrm{e}^{2}\right) \end{aligned}$	M1 M1 A1 M1 M1 A1 M1 A1 [8]	Divide by x Multiply and recognise derivative Integrate Use condition	

Question		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & \left(\begin{array}{c} 2 \\ 3 \\ -1 \end{array}\right) \times\left(\begin{array}{c} 4 \\ -1 \\ -1 \end{array}\right)=\left(\begin{array}{c} -4 \\ -2 \\ -14 \end{array}\right)=-2\left(\begin{array}{l} 2 \\ 1 \\ 7 \end{array}\right) \\ & \left(\begin{array}{l} 3 \\ 0 \\ 1 \end{array}\right)-\left(\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{c} 2 \\ -2 \\ 0 \end{array}\right) \end{aligned}$ $\text { shortest distance }=\frac{\left\|\left(\begin{array}{c} 2 \\ -2 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 1 \\ 7 \end{array}\right)\right\|}{\sqrt{2^{2}+1^{2}+7^{2}}}=\frac{2}{\sqrt{54}} \text { oe }$	M1 A1 B1 M1 A1 [5]	Or any multiple Or negative Component of their vector in their direction	Or use of $\mathrm{n} .\left(\mathrm{a}_{1}+\mathrm{pb}_{1}+\mathrm{kn}\right)=\mathrm{n} .\left(\mathrm{a}_{2}+\mathrm{qb} \mathrm{b}_{2}\right) \mathbf{B 1}$ followed by attempt to calculate magnitude of kn M1
4	(ii)	$2 x+y+7 z=\ldots$	B1ft B1 dep [2]	ft from 4(i) only if $1^{\text {st }}$ M1 mark gained If zero, then sc $\mathbf{1}$ for any correct vector equation.	
5	(i)	$1, \mathrm{e}^{\frac{2}{5} \pi \mathrm{i}}, \mathrm{e}^{\frac{4}{5} \pi \mathrm{i}}, \mathrm{e}^{\frac{6}{5} \pi \mathrm{i}}, \mathrm{e}^{\frac{8}{5} \pi \mathrm{i}}$ oe polar form	M1 A1 [2]	Attempt roots	e.g. gives roots in an incorrect form.

Question		Answer$\begin{aligned} & z^{5}=(z+1)^{5}=z^{5}+5 z^{4}+10 z^{3}+10 z^{2}+5 z+1 \\ & \Leftrightarrow 5 z^{4}+10 z^{3}+10 z^{2}+5 z+1=0 \\ & \text { so } z+1=z \mathrm{e}^{\frac{2 k}{5} \pi \mathrm{i}}, k=0,1,2,3,4 \\ & k=0 \text { no solution } \\ & 1=z\left(\mathrm{e}^{\frac{2 k}{5} \pi \mathrm{i}}-1\right) \\ & z=\frac{1}{\mathrm{e}^{\frac{2 k}{5} \pi \mathrm{i}}-1}, k=1,2,3,4 \end{aligned}$	Marks M1 A1 M1 B1 A1 [5]	Guidance	
5	(ii)			soi If B0, then give A1 ft for correct solution plus $k=0$	
6	(i)	$\begin{aligned} & \text { PI: } y=a x \cos 2 x+b x \sin 2 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=a \cos 2 x-2 a x \sin 2 x+b \sin 2 x+2 b x \cos 2 x \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4 a \sin 2 x-4 a x \cos 2 x+4 b \cos 2 x-4 b x \sin 2 x \\ & \text { in DE: } \\ & -4 a \sin 2 x-4 a x \cos 2 x+4 b \cos 2 x-4 b x \sin 2 x \\ & +4(a x \cos 2 x+b x \sin 2 x) \\ & \text { compare coefficients: }-4 a=1,4 b=0 \\ & \Rightarrow a=-\frac{1}{4}, b=0 \\ & \text { AE: } \lambda^{2}+4=0 \\ & \lambda= \pm 2 \mathrm{i} \\ & \text { CF: } A \cos 2 x+B \sin 2 x \\ & \text { GS: } y=\left(A-\frac{1}{4} x\right) \cos 2 x+B \sin 2 x \end{aligned}$	B1 M1 M1 A1 M1 A1 A1ft [7]	For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or better Differentiate twice and substitute For correct auxiliary equation and attempt to solve oe form Must be real and contain 2 unknowns	

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & \cos \theta+\cos 2 \theta+\ldots+\cos 10 \theta=\operatorname{Re}\left(\frac{\mathrm{e}^{\frac{1}{2} i \theta}\left(\mathrm{e}^{10 \mathrm{i} \theta}-1\right)}{2 \mathrm{i} \sin \left(\frac{1}{2} \theta\right)}\right) \\ & =\frac{\operatorname{Re}\left(-\mathrm{i}^{\frac{1}{2} i \theta}\left(\mathrm{e}^{10 \mathrm{i} \theta}-1\right)\right)}{2 \sin \left(\frac{1}{2} \theta\right)}=\frac{\operatorname{Re}\left(-\mathrm{ie}^{\frac{21}{2} \mathrm{i} \theta}+\mathrm{i}^{\frac{1}{2} \mathrm{i} \theta}\right)}{2 \sin \left(\frac{1}{2} \theta\right)} \end{aligned}$	M1 M1	Take real parts Manipulate expression	Must at least make genuine progress in sorting real part of numerator, or in converting numerator to trig terms.
		$\begin{aligned} & =\frac{\sin \left(\frac{21}{2} \theta\right)-\sin \left(\frac{1}{2} \theta\right)}{2 \sin \left(\frac{1}{2} \theta\right)} \\ & =\frac{\sin \left(\frac{21}{2} \theta\right)}{2 \sin \left(\frac{1}{2} \theta\right)}-\frac{1}{2} \end{aligned}$	A1 [3]	AG	
7	(iii)	$\cos \frac{1}{11} \pi+\cos \frac{2}{11} \pi+\ldots+\cos \frac{10}{11} \pi=\frac{\sin \left(\frac{21}{22} \pi\right)}{2 \sin \left(\frac{1}{22} \pi\right)}-\frac{1}{2}$ But $\quad \sin \frac{21}{22} \pi=\sin \left(\pi-\frac{21}{22} \pi\right)=\sin \frac{1}{22} \pi$ So RHS $=\frac{1}{2}-\frac{1}{2}=0$, so $\frac{1}{11} \pi$ is a root Using $\sin (2 \pi+x)=\sin x$ gives $2 \pi+\frac{1}{2} \theta=\frac{21}{2} \theta \Rightarrow \theta=\frac{1}{5} \pi$	M1 M1 A1 A1 [4]	AG	For second M1, must convince that solution is exact and not simply from calculator.

8	(i)	$\begin{aligned} & w a^{2}=w a a=a^{3} w a=a^{3} a^{3} w \\ & =a^{4} a^{2} w=e a^{2} w \\ & =a^{2} w \\ & \text { Either result } \Rightarrow w a^{3}=a^{3} w a^{2} \\ & =a^{3} a^{2} w \\ & =\text { eaw }=a w \end{aligned}$	M1 B1 A1 M1 M1 A1 [6]	Use $w a=a^{3} w$ to simplify Use $a^{4}=e(\mathrm{oe})$ in either proof Complete argument AG AG	
8	(ii)	$\begin{aligned} & (a w)^{2}=(a w)(a w) \\ & =a w w a^{3}=a e a^{3}=a^{4}=e \text { so order } 2 \\ & \left(a^{2} w\right)\left(a^{2} w\right)=a^{2} w w a^{2}=a^{2} e a^{2}=a^{4}=e \text { so order } 2 \\ & \left(a^{3} w\right)\left(a^{3} w\right)=a^{3} w w a=a^{3} e a=a^{4}=e \text { so order } 2 \end{aligned}$	M1 M1 A1 A1 [4]	for squaring any of elements for attempt to simplify to e for at least two squared elements shown equal to e for complete argument	
8	(iii)	$\begin{aligned} & \left\{e, a^{2}, w, a^{2} w\right\} \\ & \left\{e, a^{2}, a w, a^{3} w\right\} \\ & a^{2}, w, a w, a^{2} w, a^{3} w \text { all of order } 2 \end{aligned}$ so not cyclic as no element of order 4 in either	B1 B1 M1 A1 [4]	Consider orders Or considers form $\{\mathrm{e}, \mathrm{x}, \mathrm{y}, \mathrm{xy}\}$ where x, y order 2 Dep on both groups correct	Condone equivalents Condone 'no generator' or 'Klein (V) group' in place of 'no element of order 4'

Question		Answer	Marks	Guidance	
1	(i)	vectors in plane: two of $\left(\begin{array}{c}-4 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 6 \\ 4\end{array}\right)=2\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$ $\mathbf{r}=\left(\begin{array}{l} 1 \\ 6 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} 4 \\ 2 \\ 3 \end{array}\right)$	M1 A1 [2]	Differences between two pairs Aef of parametric equation	Any multiple Must have "r = ..."
1	(ii)	Alternate method	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \end{gathered}$	Calculate vector product or multiple Aef of cartesian equation, isw. EITHER x, y, z in parametric form both parameters in terms of e.g. x, y substitute into parametric form of Z OR x, y, z in parametric form 2 equations in x, y, z and one parameter eliminate parameter	M1 can be awarded where vector product has method shown or only one term wrong Or Cartesian form $=d$ with attempt to compute d

Question		Answer	Marks	Guidance	
2	(i)	1 3 5 7 1 1 3 5 7 3 3 1 7 5 5 5 7 1 3 7 7 5 3 1 From table clearly closed 1 is identity $3^{-1} \equiv 3,5^{-1} \equiv 5,7^{-1} \equiv 7(\bmod 8)$	B2 B1 B1 B1 [5]	-1 each error Superfluous fact/s gets -1	Must be clear they are referring to tabulated results Or "1 appears in every row"
2	(ii)	1 has order 1 and 3, 5, 7 all have order 2	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
2	(iii)	\{1, 3\}, \{1, 5\}, \{1, 7\} (and \{1\})	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	All correct, no extras	Allow $\{1\}$ included or omitted
2	(iv)	in $H^{2} \equiv 9(\bmod 10)$ so 3 not order 2 no element of order >2 in G so not isomorphic	M1 A1 [2]	Shows and states that 3 or that 7 is not order 2 (or is order 4) Completely correct reasoning Or, if zero, then SC1 for merely stating comparable orders and then saying that "orders don't correspond, so not isomorphic" Or table for H with saying "not all elements self inverse, so not isomorphic"	

Question		Answer	Marks	Guidance	
4	(i)	Sketch $O A=\|3\|=3, O B=\left\|3 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right\|=3$ and $\angle B O A=\frac{1}{3} \pi$ hence $\triangle O A B$ equilateral	B1 M1 A1 [3]	Can be seen on diagram	Must have axes, A shown 3 across and either scale (or co-ordinates) with B in rough position, or angle and distance on argand diagram. No inconsistencies Alt. Attempts AB or second angle
4	(ii)	$3 \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}$	M1A1 [2]	Or $3 \mathrm{e}^{\frac{5}{3} \pi \mathrm{i}}$. Isw M1 for evidence they are considering BA, or for $\frac{3}{2}-\frac{3}{2} \sqrt{3} \mathrm{i}$	For full marks can use CiS form, or clear polar co-ordinates, in radians. Not C-iS
4	(iii)	$\begin{aligned} & \left(3-3 \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right)^{5}=3^{5} \mathrm{e}^{-\frac{5}{3} \pi \mathrm{i}} \\ & =243\left(\cos \frac{5}{3} \pi-\mathrm{i} \sin \frac{5}{3} \pi\right) \\ & =\frac{243}{2}+\frac{243}{2} \sqrt{3} \mathrm{i} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { B1 } \\ \text { [3] } \end{gathered}$	For $\bmod ^{5}$ and $\arg \times 5$ aef	"Hence" so must use 'their $3 \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}$, Condone use of "121.5".

Question		Answer	Marks	Guidance	
6	(ii)	$\begin{aligned} & \cos \left(\frac{1}{2} \pi-\theta\right)=\frac{\left\|\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right)\right\|}{\left.\left\|\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right)\right\|\left(\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right) \right\rvert\,}=\frac{10}{3 \sqrt{30}} \\ & \theta=0.654 \end{aligned}$	M1A1 A1 [3]	or 37.5°	Attempt to find angle or its complement
6	(iii)	If P is point of intersection and Q is required point, $\begin{aligned} & \overrightarrow{P Q}=\lambda\left(\begin{array}{l} 2 \\ 5 \\ 1 \end{array}\right) \text { so } \sin \theta=\frac{2}{P Q}=\frac{2}{\|\lambda\| \sqrt{30}} \\ & \frac{10}{3 \sqrt{30}}=\frac{2}{\|\lambda\| \sqrt{30}} \\ & \lambda= \pm \frac{3}{5} \end{aligned}$ points have position vectors $\left(\begin{array}{l}3 \\ 4 \\ 3\end{array}\right) \pm \frac{3}{5}\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right)$ points at (1.8, 1, 2.4) and (4.2, 7, 3.6) Alternative: $\begin{aligned} & \text { Distance }=\frac{\|2 t+1+2(5 t-1)-2(t+2)-5\|}{\sqrt{1^{2}+2^{2}+2^{2}}}=2 \\ & \Rightarrow t=0.4 \text { or } 1.6 \\ & (1.8,1,2.4) \text { and }(4.2,7,3.6) \end{aligned}$	$\begin{gathered} \text { M1* } \\ \\ \text { M1 } \\ \text { A1 } \\ \\ \text { *M1 } \\ \\ \text { A1 } \\ \\ \text { M1* } \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [5] } \end{gathered}$	or $\overrightarrow{P Q} \cdot \hat{\mathbf{n}}= \pm 2$ where $\mathbf{n}=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ Dep on $1^{\text {st }} \mathrm{M} 1$ cao Solve At least one value found	Use $\overrightarrow{P Q}$ with right angled triangle or consider component of $\overrightarrow{P Q}$ in direction of normal vector. Valid method to set up equation in λ alone. (May work from general point on original equation) Zero if formula used without substitution in of parametric form.

Question		Answer $(a b)^{6}=a b a b . . . a b=a^{6} b^{6}$ as commutative $=\left(a^{2}\right)^{3}\left(b^{3}\right)^{2}=e^{3} e^{2}=e$ So $a b$ has order $1,2,3$, or 6 ($b \neq a \Rightarrow a b \neq a^{2} \Rightarrow a b \neq e$ so $a b$ not order 1) $(a b)^{2}=a^{2} b^{2}=e b^{2}=b^{2}$ and b not order 2 , so $a b$ not order 2 $(a b)^{3}=a^{3} b^{3}=a a^{2} e=a e e=a \neq e$, so $a b$ not order 3 (So must be order 6)	Marks	Guidance	
7	(i)		M1 A1 M1 A1 [4]	Must give reason Using orders of a and b Consider other cases AG Complete argument	Some demonstration that they understand commutativity Condone absence of this line Insufficient to merely have simplified all $(a b)^{n}$
7	(ii)	$a c$ has order 18 18 is LCM of 2 and 9 , (so we can use a similar argument to part (i)) So as G has an element of order 18 it must be cyclic.	B1 M1 A1 [3]	or explicit consideration of other cases AG Complete argument	Or $a b c$ or generator
8	(i)	$\begin{aligned} & \cos 5 \theta+\mathrm{i} \sin 5 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{5} \\ & =c^{5}+5 \mathrm{i}^{4} s-10 c^{3} s^{2}-10 \mathrm{ic}^{2} s^{3}+5 c s^{4}+\mathrm{is}^{5} \\ & \cos 5 \theta=c^{5}-10 c^{3} s^{2}+5 c s^{4} \\ & =c^{5}-10 c^{3}\left(1-c^{2}\right)+5 c\left(1-c^{2}\right)^{2} \\ & =c^{5}-10 c^{3}+10 c^{5}+5 c-10 c^{3}+5 c^{5} \\ & \cos 5 \theta=16 c^{5}-20 c^{3}+5 c \end{aligned}$	B1 M1 M1 M1 A1 [5]	Or $\cos 5 \theta=r e\left\{(\cos \theta+\mathrm{i} \sin \theta)^{5}\right\}$ Take real parts AG	No more than 1 error, can be unsimplified

Question		Answer	Marks	Guidance	
8	(ii)	Multiplying by x gives $16 x^{5}-20 x^{3}+5 x=0$ letting $x=\cos \alpha$ gives $\cos 5 \alpha=0$ hence $5 \alpha=\frac{1}{2} \pi, \frac{3}{2} \pi, \frac{5}{2} \pi, \frac{7}{2} \pi, \frac{9}{2} \pi$ $\alpha=\frac{1}{10} \pi, \frac{3}{10} \pi, \frac{5}{10} \pi, \frac{7}{10} \pi, \frac{9}{10} \pi$ $\cos \frac{5}{10} \pi=0$ which is not a root so roots $x=\cos \frac{1}{10} \pi, \cos \frac{3}{10} \pi, \cos \frac{7}{10} \pi, \cos \frac{9}{10} \pi$	M1 A1 A1 A1 [4]		Hence, so no marks for using quadratic at this stage.
8	(iii)	$16 x^{4}-20 x^{2}+5=0 \Leftrightarrow x^{2}=\frac{20 \pm \sqrt{80}}{32}$ cos decreases between 0 and π so $\cos \frac{1}{10} \pi$ is greatest root $\text { so } \cos \frac{1}{10} \pi=\sqrt{\frac{20+\sqrt{80}}{32}}=\sqrt{\frac{5+\sqrt{5}}{8}}$	B1 M1 A1 [3]	Dep on full marks in (ii)	Can be gained if seen in (ii)

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & \left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \times\left(\begin{array}{l} 3 \\ 5 \\ 2 \end{array}\right)=\left(\begin{array}{c} 7 \\ -7 \\ 7 \end{array}\right)=7\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \\ & (\mathrm{eg}) z=0 \Rightarrow 2 x+y=4,3 x+5 y=13 \Rightarrow x=1, y=2 \\ & \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \end{aligned}$	M1 A1 M1 A1	oe vector form	M1 requires evidence of method for cross product or at least 2 correct values calculated or any valid point e.g. $(0,3,-1),(3,0,2)$ Must have full equation including 'r $=$,
		Alternative: Find one point Find a second point and vector between points $\begin{aligned} & \text { multiple of }\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \\ & \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \end{aligned}$ Alternative: Solve simultaneously Point and direction found $\mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right)$	M1 M1 A1 A1 M1 M1 A1 A1 [4]	to at least expressions for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ parametrically, or two relationship between 2 variables.	

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & z^{6}=1 \Rightarrow z=\mathrm{e}^{2 k \pi \mathrm{i} / 6} \\ & k=0,1,2,3,4,5 \end{aligned}$ Diagram	M1 A1 B1 B1 [4]	Oe exactly 6 roots 6 roots in right quadrant, correct angles and moduli	accept roots $1,-1$ given as integers. as evidenced by labels, circles, or accurate diagram, or by co-ordinates
3	(ii)	$\begin{aligned} & (1+i)^{6}=\left(\sqrt{2} e^{\frac{1}{4} \pi \mathrm{i}}\right)^{6} \\ & 8 \mathrm{e}^{\frac{6}{4} \pi \mathrm{i}} \\ & =-8 \mathrm{i} \end{aligned}$ Alternative: $\begin{aligned} & (1+i)^{6}=1+6 i+15 i^{2}+20 i^{3}+15 i^{4}+6 i^{5}+i^{6} \\ & \quad=1+6 i-15-20 i+15+6 i-1 \\ & =-8 i \end{aligned}$ Alternative: $(1+\mathrm{i})^{2}=2 \mathrm{i}$ $\begin{aligned} & (1+i)^{6}=(2 \mathrm{i})^{3} \\ & =-8 \mathrm{i} \end{aligned}$	M1 M1 A1 M1 M1 A1 M1 M1 A1 [3]	Attempts modulus-argument form, getting at least 1 correct for (mod) ${ }^{6}$ and $\arg \mathrm{x} 6$ ag no more than 1 term wrong ag ag	complete argument including start line Sc 2 for only lines 2 \& 3correct

Question		Answer	Marks M1	Guidance			
6	(i)	$l \\|\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right) \Pi \perp\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$ so $\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)=0 \Rightarrow l \\| \Pi$ $(1,-2,7)$ on l but $4 \times 1--2-7=-1 \neq 8$ so not in Π hence l not in Π	M1 M1 A1 [3]	dot product of correct vectors $=0$ substitute point on line into Π and calculate d Full argument includes key components	Argument can be about a general point on line		
6	(ii)	$(\mathbf{r}=)\left(\begin{array}{c} 1 \\ -2 \\ 7 \end{array}\right)+\lambda\left(\begin{array}{c} 4 \\ -1 \\ -1 \end{array}\right)$ closest point where meets Π $\begin{aligned} & 4(1+4 \lambda)-(-2-\lambda)-(7-\lambda)=8 \\ & \Rightarrow \lambda=\frac{1}{2} \\ & \Rightarrow \mathbf{r}=\left(\begin{array}{c} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{array}\right) \end{aligned}$	B1 M1 A1ft A1 [4]	parametric form of (x, y, z) substituted into plane			
6	(iii)	$\mathbf{r}=\left(\begin{array}{c}3 \\ -\frac{5}{2} \\ \frac{13}{2}\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$	B1ft [1]	oe	must have "r ="		

Question		Answer	$\begin{gathered} \text { Marks } \\ \hline \text { B1 } \end{gathered}$	Guidance	
7	(i)	$\begin{aligned} & 2 \mathrm{i} \sin \theta=\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta} \\ & 2 \mathrm{i} \sin n \theta=\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{in} \theta} \\ & (2 \mathrm{i} \sin \theta)^{5}=\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \\ & =\mathrm{e}^{\mathrm{i} 5 \theta}-5 \mathrm{e}^{\mathrm{i} 3 \theta}+10 \mathrm{e}^{\mathrm{i} \theta}-10 \mathrm{e}^{-\mathrm{i} \theta}+5 \mathrm{e}^{-\mathrm{i} 3 \theta}-\mathrm{e}^{-\mathrm{i} 5 \theta} \\ & 32 i \sin ^{5} \theta=\left(e^{5 i \theta}-e^{-5 i \theta}\right)-5\left(e^{3 i \theta}-e^{-3 i \theta}\right)+10\left(e^{\mathrm{i} \theta}-e^{-\mathrm{i} \theta}\right) \\ & =2 \mathrm{i} \sin 5 \theta-5(2 \mathrm{i} \sin 3 \theta)+10(2 \mathrm{i} \sin \theta) \\ & \sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) \end{aligned}$	B1 M1* M1dep* A1 [4]	any equivalent form binomial expansion grouping terms AG	If use z, must define it can be unsimplified Award B1 then sc M1A1 for candidates who omit this stage from otherwise complete argument must convince on the $\frac{1}{16}$ and on the elimination of i
7	(ii)	$\begin{aligned} & 16 \sin ^{5} \theta-10 \sin \theta=\sin 5 \theta-5 \sin 3 \theta \\ & 16 \sin ^{5} \theta-6 \sin \theta=0 \\ & \sin \theta=0, \pm \sqrt[4]{\frac{3}{8}} \\ & \theta=0, \pm 0.899 \end{aligned}$	M1* A1 M1dep* A1 [4]	Attempts to eliminate $\sin 5 \theta$ and $\sin 3 \theta$ must have 3 values for $\sin \theta$	Or $16 \sin ^{5} \theta=6 \sin \theta$

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \text { is identity } \\ & \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)^{-1}=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{cc} a & b \\ -b & a \end{array}\right) \in G \\ & \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)\left(\begin{array}{cc} c & -d \\ d & c \end{array}\right)=\left(\begin{array}{cc} a c-b d & -b c-a d \\ b c+a d & a c-b d \end{array}\right) \\ & \text { and } \\ & \left(\begin{array}{ll} a c-b d \end{array}\right)^{2}+(b c+a d)^{2}=a^{2} c^{2}+b^{2} d^{2}+b^{2} c^{2}+a^{2} d^{2} \\ & =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \neq 0 \end{aligned}$	B1 M1 A1 M1 M1 A1 [6]	for M1, must at least get matrix in form $\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)$, or state existence of inverse due to non-singularity Must not attempt to prove commutativity in (i)	
8	(ii)	$\begin{aligned} & \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right)\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)=\left(\begin{array}{cc} a c-b d & -b c-a d \\ b c+a d & a c-b d \end{array}\right) \\ & =\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)\left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) \text { so commutative } \end{aligned}$	M1 A1 [2]		must also consider matrices reversed, but may be seen in (i)
8	(iii)	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)^{2}=\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)^{2}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \end{aligned}$ order 4	M1 M1 A1 [3]	g^{2} must be correct allow 1 error in getting g^{4}	

